9,702 research outputs found

    Electrolytic smelting of lunar rock for oxygen, iron, and silicon

    Get PDF
    Preliminary studies of the electrochemical properties of silicate melts such as those available from heating of lunar mare soils indicate that conductivities are high enough for design of a practical electrolytic cell. The nature and kinetics of the electrode reactions, which involve reduction of Fe(++) and Si(IV) and oxidation of silicate anions as the primary, product-forming reactions, are also satisfactory. A survey of the efficiencies for production (amount of product for a given current) of O2, Fe(sup 0), and Si(sup 0) as functions of potential and of electrolyte composition indicate that conditions can be chosen to yield high production efficiencies. We also conclude that electronic conductivity does not occur to a significant extent. Based on these data, a cell with electrodes of 30 sq m in area operating between 1 and 5V with a current between 1.6 and 3.5(10)(exp 5) A for a mean power requirement of 0.54 MW and total energy use of approximately 13 MWhr per 24-hr day would produce 1 ton of O2, 0.81 ton of Fe(sup 0), 0.65 ton of Si(sup 0) (as Fe(sup 0)-Si(sup 0) alloy), and about 3.5 tons of silicate melt of altered composition per 24 hr. Adjustable distance between electrodes could offer flexibility with respect to feedstock and power source

    Technological development in Therapeutic applications of alternating electric fields: Review

    Get PDF
    A number of bacteria, virus and other unhealthy cells need to be killed for getting rid of them. For more than a century antibiotics have been effectively used for killing bacterial pathogens and chemical drugs against the cancer cells. However, there are bacteria and cancer cells that are drug resistant. This may have to be overcome by other stronger drugs, higher dosage. These can have detrimental side effects. Other non drug methods to aid the effect of these drugs have always been in research. Electrochemotherapy, a method of using electric fields along with the drug to be used topically has been one of the successful approaches. One of the most recent methods of Tumor Treating Frequencies (TTF) for a brain cancer has been FDA approved. This article details the use of TTF. The article also details some other latest research where alternating fields are used as antibacterial agents

    A switchable pH-differential unitized regenerative fuel cell with high performance

    Get PDF
    Regenerative fuel cells are a potential candidate for future energy storage, but their applications are limited by the high cost and poor round-trip efficiency. Here we present a switchable pH-differential unitized regenerative fuel cell capable of addressing both the obstacles. Relying on a membraneless laminar flow-based design, pH environments in the cell are optimized independently for different electrode reactions and are switchable together with the cell process to ensure always favorable thermodynamics for each electrode reaction. Benefiting from the thermodynamic advantages of the switchable pH-differential arrangement, the cell allows water electrolysis at a voltage of 0.57 V, and a fuel cell open circuit voltage of 1.89 V, rendering round-trip efficiencies up to 74%. Under room conditions, operating the cell in fuel cell mode yields a power density of 1.3 W cm¯², which is the highest performance to date for laminar flow-based cells and is comparable to state-of-the-art polymer electrolyte membrane fuel cells

    Studies on Alternating Current Electrolysis. IV . Mathematical Treatment of Reversible Electron Transfer with Alternating Voltage Control and Distorted Current

    Get PDF
    A mathematical treatment is developed which yields equations relating faradaic current, voltage, and time when an alternating voltage is applied to an electrolytic cell composed of a plane and auxiliary electrodes immersed in a solution containing initially supporting electrolyte and only reversibly oxidizable or reducible species. Both oxidant and reductant are taken to be soluble, and specific adsorption is assumed to be absent. The voltage across that branch of the equivalent circuit through which only faradaic current flows is assumed to be periodic with fixed amplitude and with or without an additional direct applied voltage component; the resultant current is distorted. Diffusion controlled kinetics is postulated, and it is assumed that equilibrium is essentially established at the electrode surface. The equations developed show that a “steady state” (i.e., a periodic state) is quickly attained, yield diagnostic tests of use in establishing the reversible mechanism, make it possible to determine the standard potential, and finally yield for the periodic state a relation between faradaic current and time. These results are then generalized so as to include systems in which the reversible electrochemical step is followed by a sufficiently slow secondary reaction step. One diagnostic result of interest in the latter connection is that the mean faradaic current vanishes in the periodic state, regardless of the amplitude or of the shape of the applied periodic potential, when the follow‐up reaction occurs to a negligible extent

    On the Electro-deposition of Metallic Selenium (the 6th Report) : Effects of Aerial Agitation and A. C. Superposing

    Get PDF
    The authors already reported relating to the preventing effects of several additions for the pitting hole which occurred in electrolysis of conc. sulphuric acid bath. In this rerort, the same effects are investigated by acting an aerial agitation or superposing an alternating current on a direct current. The results obtained are as follows:--(1) The aerial agitation during electrolysis prevents the occurrence of pitting hole to a considerable extent, but tis effect is insufficient.(2) Superposing an alternating current on a direct current during electrolysis, the occurrence of pitting hole is prevented perfectly. But the amount of deposit selenium decreases to some extent.前報に於ては18n硫酸浴からのセレン電着について報告した。即ちこの浴からは比較的良好な金属セレンを電着せしめ得るが,相当に程度のひどいpitting hole(以下pit.と記する)を生ずる。而してこのpit.を防止するため界面活性剤その他の添加剤を用いて電着膜に及ぼす影響を調べた。本報に於ては更にこのpit.防止の目的で空気撹持の影響及び交直流重畳電解の影響を調べたのでその結果の概略を報告する

    Macrocyclic cyanocobalamin (vitamin B12) as a homogeneous electrocatalyst for water oxidation under neutral conditions

    No full text
    Highly water-soluble cyanocobalamin (also known as vitamin B-12) is the most structurally macrocyclic complex comprising cobalt in the center of a corrin ring. Interestingly, it acts as a robust electrocatalyst in water oxidation at similar to 0.58 V overpotential with a faradaic efficiency of 97.50% under neutral buffered conditions. The catalyst is impressively stable even after long-term bulk electrolysis, and homogeneous in nature, as established by a series of experiments and characterization techniques
    corecore