377,513 research outputs found
Velocity vector control system augmented with direct lift control
A pilot-controlled stability control system that employs direct lift control (spoiler control) with elevator control to control the flight path angle of an aircraft is described. A computer on the aircraft generates an elevator control signal and a spoiler control signal, using a pilot-controlled pitch control signal and pitch rate, vertical velocity, roll angle, groundspeed, engine pressure ratio and vertical acceleration signals which are generated on the aircraft. The direct lift control by the aircraft spoilers improves the response of the aircraft flight path angle and provides short term flight path stabilization against environmental disturbances
Aircraft control system
An aircraft control system is described which is particularly suited to rotary wing aircraft. Longitudinal acceleration and course rate commands are derived from a manual control stick to control translational velocity of the aircraft along a flight path. In the collective channel the manual controls provide vertical velocity commands. In the yaw channel the manual controls provide sideslip or heading rate commands at high or low airspeeds, respectively. The control system permits pilots to fly along prescribed flight paths in a precise manner with relatively low work load
Aircraft control position indicator
An aircraft control position indicator was provided that displayed the degree of deflection of the primary flight control surfaces and the manner in which the aircraft responded. The display included a vertical elevator dot/bar graph meter display for indication whether the aircraft will pitch up or down, a horizontal aileron dot/bar graph meter display for indicating whether the aircraft will roll to the left or to the right, and a horizontal dot/bar graph meter display for indicating whether the aircraft will turn left or right. The vertical and horizontal display or displays intersect to form an up/down, left/right type display. Internal electronic display driver means received signals from transducers measuring the control surface deflections and determined the position of the meter indicators on each dot/bar graph meter display. The device allows readability at a glance, easy visual perception in sunlight or shade, near-zero lag in displaying flight control position, and is not affected by gravitational or centrifugal forces
Adaptive output feedback control of aircraft flexible modes
The application of adaptive output feedback augmentative control to the flexible aircraft problem is presented. Experimental validation of control scheme was carried out using a three disk torsional pendulum. In the reference model adaptive control scheme, the rigid aircraft reference model and neural network adaptation is used to control structural flexible modes and compensate for the effects unmodeled dynamics and parametric variations of a classical high order large passenger aircraft. The attenuation of specific low and high frequency flexible mode depending on linear controller design specifications and adaptation parameters were observed. The effectiveness of the approach was seen in flexibility control of the high dimensional, nonminimum phase, nonlinear aircraft model with parametric uncertainties of wind and unmodeled dynamics of actuators and sensors
Study of dynamics of X-14B VTOL aircraft
Research was initiated to investigate certain facets of modern control theory and their integration with a digital computer to provide a tractable flight control system for a VTOL aircraft. Since the hover mode is the most demanding phase in the operation of a VTOL aircraft, the research efforts were concentrated in this mode of aircraft operation. Research work on three different aspects of the operation of the X-14B VTOL aircraft is discussed. A general theory for optimal, prespecified, closed-loop control is developed. The ultimate goal was optimal decoupling of the modes of the VTOL aircraft to simplify the pilot's task of handling the aircraft. Modern control theory is used to design deterministic state estimators which provide state variables not measured directly, but which are needed for state variable feedback control. The effect of atmospheric turbulence on the X-14B is investigated. A maximum magnitude gust envelope within which the aircraft could operate stably with the available control power is determined
Filtering technique based on high-frequency plant modeling for high-gain control
This invention was an improvement in aircraft control systems that utilized feedback motion sensors to generate a signal to control the aircraft. The improvement consisted essentially of a complementary filter comprising a simplified model of the aircraft, a high pass filter, a low pass filter and a summing amplifier. The control signal was applied to the simplified model of the aircraft which attempted to compute the vehicle response to the signal. This computed response was then fed into the high pass filter to eliminate long term errors in the calculated response, with the result that a good estimate of the high frequency content of the aircraft motion was obtained. In order to obtain a good estimate of the low frequency content of the motion, a rate gyro signal was fed through the low pass filter that eliminates all of the offending noise
Pilot-model analysis and simulation study of effect of control task desired control response
A pilot model analysis was performed that relates pilot control compensation, pilot aircraft system response, and aircraft response characteristics for longitudinal control. The results show that a higher aircraft short period frequency is required to achieve superior pilot aircraft system response in an altitude control task than is required in an attitude control task. These results were confirmed by a simulation study of target tracking. It was concluded that the pilot model analysis provides a theoretical basis for determining the effect of control task on pilot opinions
Theoretical linear approach to the combined man-manipulator system in manual control of an aircraft
An approach to the calculation of the dynamic characteristics of the combined man manipulator system in manual aircraft control was derived from a model of the neuromuscular system. This model combines the neuromuscular properties of man with the physical properties of the manipulator system which is introduced as pilot manipulator model into the manual aircraft control. The assumption of man as a quasilinear and time invariant control operator adapted to operating states, depending on the flight phases, of the control system gives rise to interesting solutions of the frequency domain transfer functions of both the man manipulator system and the closed loop pilot aircraft control system. It is shown that it is necessary to introduce the complete precision pilot manipulator model into the closed loop pilot aircraft transfer function in order to understand the well known handling quality criteria, and to derive these criteria directly from human operator properties
- …