1,671 research outputs found

    Airborne forest fire research

    Get PDF
    The research relating to airborne fire fighting systems is reviewed to provide NASA/Langley Research Center with current information on the use of aircraft in forest fire operations, and to identify research requirements for future operations. A literature survey, interview of forest fire service personnel, analysis and synthesis of data from research reports and independent conclusions, and recommendations for future NASA-LRC programs are included

    Air tanker drop patterns

    Get PDF
    Ground patterns of liquid aerial drops for combating wildfires are considered. Based on a significant number of drop tests performed using different airplanes and helicopters, a simple model for the length, the width and the coverage distribution is presented. At first order both the length and the width of the drop pattern can be described using simple relations despite the significant difference between the conditions of the drop tests considered. These relations include factors that can be manipulated during aircraft and release system design, as well as during aerial firefighting operations. The liquid on the ground follows a Gaussian distribution that makes possible an original prediction of the maximum coverage level on the pattern centreline confirmed by the experiments. The difference between gravity systems and recent pressurised systems is also discussed. We show a clear difference between gravity systems and pressurised systems. The width is larger for pressurised systems, resulting in a smaller coverage for the same condition of drop

    A feasibility study: California Department of Forestry and Fire Protection utilization of infrared technologies for wildland fire suppression and management

    Get PDF
    NASA's JPL has completed a feasibility study using infrared technologies for wildland fire suppression and management. The study surveyed user needs, examined available technologies, matched the user needs with technologies, and defined an integrated infrared wildland fire mapping concept system configuration. System component trade-offs were presented for evaluation in the concept system configuration. The economic benefits of using infrared technologies in fire suppression and management were examined. Follow-on concept system configuration development and implementation were proposed

    High-Volume Airborne Fluids Handling Technologies to Fight Wildfires

    Get PDF
    NASA recently partnered with the U.S. Forest Service (USFS) on a project to examine mission suitability and recommend policies and procedures for the use of very large aerial firefighting aircraft such as the Boeing 747 and DC-10 aerial retardant delivery aircraft. The aircraft under study included a 10Tanker DC-10 and an Evergreen B-747. NASA's Dryden Flight Research Center and Ames Research Center worked with the USFS to help determine the safe flight envelope for these Very Large Air Tanker (VLAT) aircraft for the USFS and the Department of the Interior (DOI). This new generation of supertankers includes aircraft like these that have as much as four times the delivery capacity of the previous generation of aerial firefighting aircraft. Dryden performed operational test and evaluation assessments and reported findings and recommendations on these aircraft in cooperation with Ames. The team developed, implemented, and directed an evaluation test plan for use in flight test and in simulation. Ames provided support using pilot-in-the-loop simulations and coordinated simulator models, flight profiles, and data analysis with Dryden. The test plan was designed to evaluate the suitability of VLAT aircraft as a function of mission environment. Based on this analysis, NASA generated interim flight envelope limitations to enhance safety and operational utility in the fire-retardant delivery mission. These recommended flight limitations were adopted by the USFS. The 10Tanker DC-10 has been in use for several years with the California Department of Forestry and Fire Protection(Cal-Fire), but until NASA took on the challenge of reviewing VLAT capabilities and limitations, the USFS was hesitant to add them to the federal wildfire arsenal. The DC-10 delivery system is based on an externally mounted set of tanks and a bomb-bay style set of clamshell doors that are opened in precisely calibrated ways to deliver the amounts and concentrations of retardant called for by the specific wildfire situation. The system was manufactured by Jordan Air of Central Point, OR, and was installed by Victorville Aerospace in Victorville, CA. It can deliver 12,000 gallons (45.4 kL) of retardant in as little as eight seconds. The aircraft can deliver a partial load of retardant and make multiple drops on the same flight, or the entire load can be rapidly delivered in one pass if required for maximum coverage. The Evergreen 747 uses internal tankage and a pressurized delivery system to enable volume and coverage levels that also meet USFS requirements, but enables computer control of flow for desired precision. This system was designed and built by Adaptive Aerospace of Tehachapi, CA and can deliver about 20,000 gallons (75.7 kL) of retardant in approximately ten seconds. The 747 can also make multiple independent drops, or deliver the entire load at once. NASA found that both of these VLAT aircraft are compatible with the wildfire suppression mission when used to supplement other aerial retardant delivery platforms. The major recommendations for deployment that resulted from this study relate to terrain clearance, the type of terrain in the drop area, availability of qualified lead planes to guide the VLAT approach to the drop area, and low-altitude maneuvering limitations. NASA s analysis suggests that with the appropriate flight procedures, these aircraft will provide a powerful set of tools to fight wildfires

    Optimization of aircraft seat cushion fire blocking layers

    Get PDF
    This report describes work completed by the National Aeronautics and Space Administration - for the Federal Aviation Administration Technical Center. The purpose of this work was to examine the potential of fire blocking mechanisms for aircraft seat cushions in order to provide an optimized seat configuration with adequate fire protection and minimum weight. Aluminized thermally stable fabrics were found to provide adequate fire protection when used in conjunction with urethane foams, while maintaining minimum weight and cost penalty

    Deployment of a Curved Truss

    Get PDF
    Structures capable of deployment into complex, three-dimensional trusses have well known space technology applications such as the support of spacecraft payloads, communications antennas, radar reflectors, and solar concentrators. Such deployable trusses could also be useful in terrestrial applications such as the rapid establishment of structures in military and emergency service situations, in particular with regard to the deployment of enclosures for habitat or storage. To minimize the time required to deploy such an enclosure, a single arch-shaped truss is preferable to multiple straight trusses arranged vertically and horizontally. To further minimize the time required to deploy such an enclosure, a synchronous deployment with a single degree of freedom is also preferable. One method of synchronizing deployment of a truss is the use of a series of gears; this makes the deployment sequence predictable and testable, allows the truss to have a minimal stowage volume, and the deployed structure exhibits the excellent stiffness-to-mass and strength-to-mass ratios characteristic of a truss. A concept for using gears with varying ratios to deploy a truss into a curved shape has been developed and appears to be compatible with both space technology applications as well as potential use in terrestrial applications such as enclosure deployment. As is the case with other deployable trusses, this truss is formed using rigid elements (e.g., composite tubes) along the edges, one set of diagonal elements composed of either cables or folding/hinged rigid members, and the other set of diagonal elements formed by a continuous cable that is tightened by a motor or hand crank in order to deploy the truss. Gears of varying ratios are used to constrain the deployment to a single degree of freedom, making the deployment synchronous, predictable, and repeatable. The relative sizes of the gears and the relative dimensions of the diagonal elements determine the deployed geometry (e.g. curvature) of the truss

    NASA Tech Briefs, November 2010

    Get PDF
    Topics covered include: Portable Handheld Optical Window Inspection Device; Salience Assignment for Multiple-Instance Data and Its Application to Crop Yield Prediction; Speech Acquisition and Automatic Speech Recognition for Integrated Spacesuit Audio Systems ; Predicting Long-Range Traversability from Short-Range Stereo-Derived Geometry; Browser-Based Application for Telemetry Monitoring of Robotic Assets; Miniature Low-Noise G-Band I-Q Receiver; Methods of Using a Magnetic Field Response Sensor Within Closed, Electrically Conductive Containers; Differential Resonant Ring YIG Tuned Oscillator; Microfabricated Segmented-Involute-Foil Regenerator for Stirling Engines; Reducing Seal Adhesion in Low Impact Docking Systems; Optimal Flow Control Design; Corrosion-Resistant Container for Molten-Material Processing; Reusable Hot-Wire Cable Cutter; Deployment of a Curved Truss; High-Volume Airborne Fluids Handling Technologies to Fight Wildfires; Modeling of Alkane Oxidation Using Constituents and Species; Fabrication of Lanthanum Telluride 14-1-11 Zintl High-Temperature Thermoelectric Couple; A Computer Model for Analyzing Volatile Removal Assembly; Analysis of Nozzle Jet Plume Effects on Sonic Boom Signature; Optical Sidebands Multiplier; Single Spatial-Mode Room-Temperature-Operated 3.0 to 3.4 micrometer Diode Lasers; Self-Nulling Beam Combiner Using No External Phase Inverter; Portable Dew Point Mass Spectrometry System for Real-Time Gas and Moisture Analysis; Maximum Likelihood Time-of-Arrival Estimation of Optical Pulses via Photon-Counting Photodetectors; Handheld White Light Interferometer for Measuring Defect Depth in Windows; Decomposition Algorithm for Global Reachability on a Time-Varying Graph; Autonomous GN and C for Spacecraft Exploration of Comets and Asteroids; Efficient Web Services Policy Combination; Using CTX Image Features to Predict HiRISE-Equivalent Rock Density; Isolation of the Paenibacillus phoenicis, a Spore-Forming Bacterium; Monolithically Integrated, Mechanically Resilient Carbon-Based Probes for Scanning Probe Microscopy; Cell Radiation Experiment System; Process to Produce Iron Nanoparticle Lunar Dust Simulant Composite; Inversion Method for Early Detection of ARES-1 Case Breach Failure; Use of ILTV Control Laws for LaNCETS Flight Research;and Evaluating Descent and Ascent Trajectories Near Non-Spherical Bodies

    Use of airborne vehicles as research platforms

    Get PDF
    This is the accepted version of the following chapter: Gratton, G. 2012. Use of Airborne Vehicles as Research Platforms. Encyclopedia of Aerospace Engineering, which has been published in final form at http://onlinelibrary.wiley.com/doi/10.1002/9780470686652.eae604/full. Copyright @ John Wiley & Sons 2012.The use of aircraft is often valuable to position airborne sensors or to conduct experiments in ways not possible purely on the ground. An airframe, typically an older one, must be selected then adapted to the role – likely to include inlets, windows, structural changes, power supply, computing and data recording capacity, and likely the provision of external hardpoints. Once the research vehicle is created, the instruments on board will require calibration, either in isolation or by intercomparison against already calibrated instruments on board another aircraft. This calibration process will continue throughout the life of the airplane. Additionally, an operating organization must be created and obtain any necessary organizational approvals. For some specialist applications, unmanned aerial vehicles (UAVs) may also be used, which carry some special considerations of autonomy and interoperability, but similar concerns of instrument, vehicle, and operational integrity

    The role of the helicopter in transportation

    Get PDF
    A general overview is presented of the role that the helicopter plays in the current aviation scene with special emphasis on its use in the airport access function. Technological problems of present-day aircraft are discussed along with some plausible solutions. The economic and regulatory aspects of commercial helicopter operations are presented. Finally six commercial operations utilizing helicopters are reviewed and conditions that enhance the success of the helicopter in the airport access function are proposed
    corecore