208,988 research outputs found
Ab-initio density functional study of O on the Ag(001) surface
The adsorption of oxygen on the Ag(001) is investigated by means of density
functional techniques. Starting from a characterization of the clean silver
surfaces oxygen adsorption in several modifications (molecularly, on-surface,
sub-surface, AgO) for varying coverage was studied. Besides structural
parameters and adsorption energies also work-function changes, vibrational
frequencies and core level energies were calculated for a better
characterization of the adsorption structures and an easier comparison to the
rich experimental data.Comment: 26 pages, 8 figures, Surf. Sci. accepte
Sub-surface Oxygen and Surface Oxide Formation at Ag(111): A Density-functional Theory Investigation
To help provide insight into the remarkable catalytic behavior of the
oxygen/silver system for heterogeneous oxidation reactions, purely sub-surface
oxygen, and structures involving both on-surface and sub-surface oxygen, as
well as oxide-like structures at the Ag(111) surface have been studied for a
wide range of coverages and adsorption sites using density-functional theory.
Adsorption on the surface in fcc sites is energetically favorable for low
coverages, while for higher coverage a thin surface-oxide structure is
energetically favorable. This structure has been proposed to correspond to the
experimentally observed (4x4) phase. With increasing O concentrations, thicker
oxide-like structures resembling compressed Ag2O(111) surfaces are
energetically favored. Due to the relatively low thermal stability of these
structures, and the very low sticking probability of O2 at Ag(111), their
formation and observation may require the use of atomic oxygen (or ozone, O3)
and low temperatures. We also investigate diffusion of O into the sub-surface
region at low coverage (0.11 ML), and the effect of surface Ag vacancies in the
adsorption of atomic oxygen and ozone-like species. The present studies,
together with our earlier investigations of on-surface and
surface-substitutional adsorption, provide a comprehensive picture of the
behavior and chemical nature of the interaction of oxygen and Ag(111), as well
as of the initial stages of oxide formation.Comment: 17 pages including 14 figures, Related publications can be found at
http://www.fhi-berlin.mpg.de/th/paper.htm
Dissociative adsorption of methane on surface oxide structures of Pd-Pt alloys
The dissociative adsorption of methane on variously oxidized Pd, Pt and Pd-Pt
surfaces is investigated using density-functional theory, as a step towards
understanding the combustion of methane on these materials. For Pd-Pt alloys,
models of surface oxide structures are built on the basis of known oxides on Pd
and Pt. The methane adsorption energy presents large variations depending on
the oxide structure and composition. Adsorption is endothermic on the bare
Pd(111) metal surface as well as on stable thin layer oxide structures such as
the () surface oxide on Pd(100) and the PtO-like
oxide on Pt(111). Instead, large adsorption energies are obtained for the (100)
surface of bulk PdO, for metastable mixed PdPtO oxide
layers on Pt(100), and for Pd-Pt(111) surfaces covered with one oxygen
monolayer. In the latter case, we find a net thermodynamic preference for a
direct conversion of methane to methanol, which remains adsorbed on the
oxidized metal substrates via weak hydrogen-bond interactions
Investigation of attractive forces between PECVD silicon nitride microstructures and an oxidized silicon substrate
A troublesome phenomenon encountered during the realization of free-standing microstructures, for example, beams, diaphragms and micromotors, is that initially released structures afterwards stick to the substrate. This effect may occur during wafer drying after the etching process has been completed, as well as during normal operation as soon as released structures come into contact with the substrate. In this paper the most important types of attractive forces are discussed with respect to their possible influence on the performance of micromachined structures. It is concluded that the main reason for sticking of PECVD silicon nitride micromachined structures is adsorption of water molecules. The water molecules, adsorbed on both surfaces, attract each other as soon as the surfaces come into contact. It is shown that a chemical surface modification, in order to achieve hydrophobic surfaces, is an effective method for avoiding adsorption of water, and therefore reduces sticking. Sticking of micromachined structures during drying is reduced by rinsing with a non-polar liquid before wafer drying
- …