203,617 research outputs found

    Dynamics of polydisperse irreversible adsorption: a pharmacological example

    Get PDF
    Many drug delivery systems suffer from undesirable interactions with the host immune system. It has been experimentally established that covalent attachment (irreversible adsorption) of suitable macromolecules to the surface of the drug carrier can reduce such undesirable interactions. A fundamental understanding of the adsorption process is still lacking. In this paper, the classical random irreversible adsorption model is generalized to capture certain essential processes involved in pharmacological applications, allowing for macromolecules of different sizes, partial overlapping of the tails of macromolecules, and the influence of reactions with the solvent on the adsorption process. Working in one dimension, an integro-differential evolution equation for the adsorption process is derived, and the asymptotic behavior of the surface area covered and the number of molecules attached to the surface are studied. Finally, equation-free dynamic renormalization tools are applied to study the asymptotically self-similar behavior of the adsorption statistics

    Kinetics of Surfactant Adsorption at Fluid-Fluid Interfaces: Surfactant Mixtures

    Full text link
    The adsorption at the interface between an aqueous solution of several surface-active agents and another fluid (air or oil) phase is addressed theoretically. We derive the kinetic equations from a variation of the interfacial free energy, solve them numerically and provide an analytic solution for the simple case of a linear adsorption isotherm. Calculating asymptotic solutions analytically, we find the characteristic time scales of the adsorption process and observe the behavior of the system at various temporal stages. In particular, we relate the kinetic behavior of the mixture to the properties of its individual constituents and find good agreement with experiments. In the case of kinetically limited adsorption, the mixture kinetics is found to be considerably different from that of the single-surfactant solutions because of strong coupling between the species.Comment: 19 pages, 7 figures, to be published in Langmui

    Kinetics of Surfactant Adsorption at Fluid-Fluid Interfaces: Surfactant Mixtures

    Full text link
    The adsorption at the interface between an aqueous solution of several surface-active agents and another fluid (air or oil) phase is addressed theoretically. We derive the kinetic equations from a variation of the interfacial free energy, solve them numerically and provide an analytic solution for the simple case of a linear adsorption isotherm. Calculating asymptotic solutions analytically, we find the characteristic time scales of the adsorption process and observe the behavior of the system at various temporal stages. In particular, we relate the kinetic behavior of the mixture to the properties of its individual constituents and find good agreement with experiments. In the case of kinetically limited adsorption, the mixture kinetics is found to be considerably different from that of the single-surfactant solutions because of strong coupling between the species.Comment: 19 pages, 7 figures, to be published in Langmui

    pH-Dependent Selective Protein Adsorption into Mesoporous Silica

    Full text link
    The adsorption of lysozyme, cytochrome c and myoglobin, similar-sized globular proteins of approximately 1.5 nm radius, into the mesoporous silica material Santa Barbara Amorphous-15 (SBA-15) with 3.3 nm mean pore radius has been studied photometrically for aqueous solutions containing a single protein type and for binary protein mixtures. Distinct variations in the absolute and relative adsorption behavior are observed as a function of the solution's pH-value, and thus pore wall and protein charge. The proteins exhibit the strongest binding below their isoelectric points pI, which indicates the dominance of electrostatic interactions between charged amino acid residues and the -OH groups of the silica surface in the mesopore adsorption process. Moreover, we find for competitive adsorption in the restricted, tubular pore geometry that the protein type which shows the favoured binding to the pore wall can entirely suppress the adsorption of the species with lower binding affinity, even though the latter would adsorb quite well from a single component mixture devoid of the strongly binding protein. We suggest that this different physicochemical behavior along with the large specific surface and thus adsorption capability of mesoporous glasses can be exploited for separation of binary mixtures of proteins with distinct pI by adjusting the aqueous solution's pH.Comment: 15 pages, 6 figures, as submitte

    Energy distribution function based universal adsorption isotherm model for all types of isotherm

    Get PDF
    Based upon the adsorbate-adsorbent interactions due to pore size distribution and surface heterogeneity, as characterized by the adsorption isotherms, the adsorption phenomenon has many industrial and environmental applications. These adsorption isotherms are very important to define the information related to the equilibrium uptake of adsorbate-adsorbent pair. Due to the presence of different energy distribution of adsorption sites, pore size distribution, surface area availability and surface heterogeneity, of each of the adsorbent-adsorbate pair, these isotherms are categorized into six types by the International Union of Pure and Applied Chemistry and so far, in the literature, there is no generalized adsorption isotherm model available that can define and predict the behavior of all adsorption isotherm types. In this study, a universal adsorption isotherm model is developed based upon the energy distribution function of the available adsorption sites and the pore size. The proposed model is able to define all adsorption isotherm characteristics, irrespective of their multi- or monolayer formations and micro- or meso-pore distribution

    Equilibrium and dynamic moisture adsorption behaviour of bloodmeal based bioplastic

    Get PDF
    Bioplastics can be manufactured from protein or carbohydrate sources such as wheat gluten, corn, sun flower, keratin, casein, soy, gelatine and whey. A recently developed bioplastic is Novatein thermoplastic (NTP), which is produced from bloodmeal by adding water, urea, sodium sulphite, sodium dodecyl sulphate and tri-ethylene glycol (TEG), allowing it to be extruded and injection moulded. Bioplastics, compared to their petroleum counterparts, can readily adsorb or lose water, which then changes their physical properties such as tensile strength and glass transition temperature. NTP at different TEG and water contents was exposed to 20-85% relative humidity (RH) environments and change in mass recorded over 35 days to determine equilibrium and dynamic moisture adsorption behavior. Equilibrium behavior was modelled using modified Freundlich and Langmuir- Freundlich isotherms, and dynamic behavior modelled using Pilosof, Singh- ulshrestha, exponential, Langmuir-Freundlich and simple rate equations. Excellent fits were obtained for both isotherms and the last three rate equations gave best overall fits for dynamics. NTP adsorbed up to 28% by weight in water at 85% RH, reaching equilibrium within 20 days. Plastics with high TEG had a greater affinity for water but lower water adsorption rates, while dry plastic samples had a lower adsorption rate than wet samples. The two parameter Freundlich model and the exponential or simple rate model is recommended for modelling NTP equilibrium and dynamic water adsorption

    Helium condensation in aerogel: avalanches and disorder-induced phase transition

    Full text link
    We present a detailed numerical study of the elementary condensation events (avalanches) associated to the adsorption of 4^4He in silica aerogels. We use a coarse-grained lattice-gas description and determine the nonequilibrium behavior of the adsorbed gas within a local mean-field analysis, neglecting thermal fluctuations and activated processes. We investigate the statistical properties of the avalanches, such as their number, size and shape along the adsorption isotherms as a function of gel porosity, temperature, and chemical potential. Our calculations predict the existence of a line of critical points in the temperature-porosity diagram where the avalanche size distribution displays a power-law behavior and the adsorption isotherms have a universal scaling form. The estimated critical exponents seem compatible with those of the field-driven Random Field Ising Model at zero temperature.Comment: 16 pages, 14 figure
    corecore