24,112 research outputs found

    Graph Neural Machine: A New Model for Learning with Tabular Data

    Full text link
    In recent years, there has been a growing interest in mapping data from different domains to graph structures. Among others, neural network models such as the multi-layer perceptron (MLP) can be modeled as graphs. In fact, MLPs can be represented as directed acyclic graphs. Graph neural networks (GNNs) have recently become the standard tool for performing machine learning tasks on graphs. In this work, we show that an MLP is equivalent to an asynchronous message passing GNN model which operates on the MLP's graph representation. We then propose a new machine learning model for tabular data, the so-called Graph Neural Machine (GNM), which replaces the MLP's directed acyclic graph with a nearly complete graph and which employs a synchronous message passing scheme. We show that a single GNM model can simulate multiple MLP models. We evaluate the proposed model in several classification and regression datasets. In most cases, the GNM model outperforms the MLP architecture

    Graph Laplacians and Stabilization of Vehicle Formations

    Get PDF
    Control of vehicle formations has emerged as a topic of significant interest to the controls community. In this paper, we merge tools from graph theory and control theory to derive stability criteria for formation stabilization. The interconnection between vehicles (i.e., which vehicles are sensed by other vehicles) is modeled as a graph, and the eigenvalues of the Laplacian matrix of the graph are used in stating a Nyquist-like stability criterion for vehicle formations. The location of the Laplacian eigenvalues can be correlated to the graph structure, and therefore used to identify desirable and undesirable formation interconnection topologies

    SANet: Structure-Aware Network for Visual Tracking

    Full text link
    Convolutional neural network (CNN) has drawn increasing interest in visual tracking owing to its powerfulness in feature extraction. Most existing CNN-based trackers treat tracking as a classification problem. However, these trackers are sensitive to similar distractors because their CNN models mainly focus on inter-class classification. To address this problem, we use self-structure information of object to distinguish it from distractors. Specifically, we utilize recurrent neural network (RNN) to model object structure, and incorporate it into CNN to improve its robustness to similar distractors. Considering that convolutional layers in different levels characterize the object from different perspectives, we use multiple RNNs to model object structure in different levels respectively. Extensive experiments on three benchmarks, OTB100, TC-128 and VOT2015, show that the proposed algorithm outperforms other methods. Code is released at http://www.dabi.temple.edu/~hbling/code/SANet/SANet.html.Comment: In CVPR Deep Vision Workshop, 201
    corecore