22,945 research outputs found
Stationary shocks in periodic highly nonlinear granular chains
We study the existence of stationary shock waves in uniform and periodic heterogeneous highly nonlinear granular chains governed by a power-law contact interaction, comparing discrete and continuum approaches, as well as experiments. We report the presence of quasisteady shock fronts without the need for dissipative effects. When viscous effects are neglected, the structure of the leading front appears to be solely the result of dispersive effects related to the lattice wave dispersion and, for heterogeneous bead chains, to the impedance mismatch between material domains. We report analytically and numerically the shock-width scaling with the variation in the particles periodicity (cell size) and compare the obtained results with experiments. We check the state (−) behind the shock front via quasistatic compression analysis and report a very good agreement between theory and numerical data
Breathers in oscillator chains with Hertzian interactions
We prove nonexistence of breathers (spatially localized and time-periodic
oscillations) for a class of Fermi-Pasta-Ulam lattices representing an
uncompressed chain of beads interacting via Hertz's contact forces. We then
consider the setting in which an additional on-site potential is present,
motivated by the Newton's cradle under the effect of gravity. Using both direct
numerical computations and a simplified asymptotic model of the oscillator
chain, the so-called discrete p-Schr\"odinger (DpS) equation, we show the
existence of discrete breathers and study their spectral properties and
mobility. Due to the fully nonlinear character of Hertzian interactions,
breathers are found to be much more localized than in classical nonlinear
lattices and their motion occurs with less dispersion. In addition, we study
numerically the excitation of a traveling breather after an impact at one end
of a semi-infinite chain. This case is well described by the DpS equation when
local oscillations are faster than binary collisions, a situation occuring e.g.
in chains of stiff cantilevers decorated by spherical beads. When a hard
anharmonic part is added to the local potential, a new type of traveling
breather emerges, showing spontaneous direction-reversing in a spatially
homogeneous system. Finally, the interaction of a moving breather with a point
defect is also considered in the cradle system. Almost total breather
reflections are observed at sufficiently high defect sizes, suggesting
potential applications of such systems as shock wave reflectors
Pulse propagation in a linear and nonlinear diatomic periodic chain: effects of acoustic frequency band-gap
One-dimensional nonlinear phononic crystals have been assembled from periodic diatomic chains of stainless steel cylinders alternated with Polytetrafluoroethylene spheres. This system allows dramatic changes of behavior (from linear to strongly nonlinear) by application of compressive forces practically without changes of geometry of the system. The relevance of classical acoustic band-gap, characteristic for chain with linear interaction forces and derived from the dispersion relation of the linearized system, on the transformation of single and multiple pulses in linear, nonlinear and strongly nonlinear regimes are investigated with numerical calculations and experiments. The limiting frequencies of the acoustic band-gap for investigated system with given precompression force are within the audible frequency range (20–20,000 Hz) and can be tuned by varying the particle’s material properties, mass and initial compression. In the linear elastic chain the presence of the acoustic band-gap was apparent through fast transformation of incoming pulses within very short distances from the chain entrance. It is interesting that pulses with relatively large amplitude (nonlinear elastic chain) exhibit qualitatively similar behavior indicating relevance of the acoustic band gap also for transformation of nonlinear signals. The effects of an in situ band-gap created by a mean dynamic compression are observed in the strongly nonlinear wave regime
Cnoidal Waves on Fermi-Pasta-Ulam Lattices
We study a chain of infinitely many particles coupled by nonlinear springs,
obeying the equations of motion [\ddot{q}_n = V'(q_{n+1}-q_n) -
V'(q_n-q_{n-1})] with generic nearest-neighbour potential . We show that
this chain carries exact spatially periodic travelling waves whose profile is
asymptotic, in a small-amlitude long-wave regime, to the KdV cnoidal waves. The
discrete waves have three interesting features: (1) being exact travelling
waves they keep their shape for infinite time, rather than just up to a
timescale of order wavelength suggested by formal asymptotic analysis,
(2) unlike solitary waves they carry a nonzero amount of energy per particle,
(3) analogous behaviour of their KdV continuum counterparts suggests long-time
stability properties under nonlinear interaction with each other. Connections
with the Fermi-Pasta-Ulam recurrence phenomena are indicated. Proofs involve an
adaptation of the renormalization approach of Friesecke and Pego (1999) to a
periodic setting and the spectral theory of the periodic Schr\"odinger operator
with KdV cnoidal wave potential.Comment: 25 pages, 3 figure
On selection criteria for problems with moving inhomogeneities
We study mechanical problems with multiple solutions and introduce a
thermodynamic framework to formulate two different selection criteria in terms
of macroscopic energy productions and fluxes. Studying simple examples for
lattice motion we then compare the implications for both resting and moving
inhomogeneities.Comment: revised version contains new introduction, numerical simulations of
Riemann problems, and a more detailed discussion of the causality principle;
18 pages, several figure
- …