44 research outputs found
Wavefield Decomposition of Field Data, Using a Shallow Horizontal Downhole Sensor Array and a Free-surface Constraint
Uncertainties in the Estimation of the Shear-Wave Velocity and the Small-Strain Damping Ratio from Surface Wave Analysis
L'abstract è presente nell'allegato / the abstract is in the attachmen
Soil-structure interaction assessment combining deconvolution of building and field recordings with polarization analysis: application to the Matera (Italy) experiment
In this study, the wavefield radiated from a building to its surroundings is identified and extracted from M4.6 earthquake recordings collected by sensors installed in a building and on the nearby athletic field in Matera (Italy) using a new approach for soil-structure interaction assessment. The proposed approach for earthquake data analysis combines in an innovative way two methods already used in seismology and engineering seismology: deconvolution and polarization analysis. The approach enables the identification, reconstruction, and characterization of the wavefield radiated from a vibrating building into its surroundings, and the estimation of the amount of energy associated with it. The approach consists of four steps: (1) estimation of the resonant frequencies of the building, (2) deconvolution of the earthquake recordings from a building and its surroundings, (3) identification of the seismic phases, reconstruction of the signal transmitted from the building to its surroundings, and estimation of its energy, and (4) polarization analysis. Analysis of recordings of the M4.6 event highlighted that the motion related to the wavefield radiated from the building to the ground was mostly linearly polarized in the radial and transverse planes, while a clear ellipticity was observed only in the horizontal plane. The wavefield radiated from the building might be dominated by unconventionally polarized surface waves, i.e., quasi-Rayleigh waves or a combination of quasi-Rayleigh and quasi-Love waves. The results indicated that the energy transmitted from the analyzed vibrating building to its surroundings was significant and decreased the ground motion shaking due to the out-of-phase motion
Anatomy of the high-frequency ambient seismic wave field at the TCDP borehole.
International audienceThe Taiwan Chelungpu-fault Drilling Project (TCDP) installed a vertical seismic array between 950 and 1270 m depth in an active thrust fault environment. In this paper we analyze continuous noise records of the TCDP array between 1 and 16 Hz. We apply multiple array processing and noise correlation techniques to study the noise source process, properties of the propagation medium, and the ambient seismic wave field. Diurnal amplitude and slowness patterns suggest that noise is generated by cultural activity. The vicinity of the recording site to the excitation region, indicated by a narrow azimuthal distribution of propagation directions, leads to a predominant ballistic propagation regime. This is evident from the compatibility of the data with an incident plane wave model, polarized direct arrivals of noise correlation functions, and the asymmetric arrival shape. Evidence for contributions from scattering comes from equilibrated earthquake coda energy ratios, the frequency dependent randomization of propagation directions, and the existence of correlation coda waves. We conclude that the ballistic and scattered propagation regime coexist, where the first regime dominates the records, but the second is weaker yet not negligible. Consequently, the wave field is not equipartitioned. Correlation signal-to-noise ratios indicate a frequency dependent noise intensity. Iterations of the correlation procedure enhance the signature of the scattered regime. Discrepancies between phase velocities estimated from correlation functions and in-situ measurements are associated with the array geometry and its relative orientation to the predominant energy flux. The stability of correlation functions suggests their applicability in future monitoring efforts
Development of a 400 Level 3C Clamped Downhole Seismic Receiver Array for 3D Borehole Seismic Imaging of Gas Reservoirs
Reducing Uncertainties in the Velocities Determined by Inversion of Phase Velocity Dispersion Curves Using Synthetic Seismograms
Characterizing the near-surface shear-wave velocity structure using Rayleigh-wave phase velocity dispersion curves is widespread in the context of reservoir characterization, exploration seismology, earthquake engineering, and geotechnical engineering. This surface seismic approach provides a feasible and low-cost alternative to the borehole measurements. Phase velocity dispersion curves from Rayleigh surface waves are inverted to yield the vertical shear-wave velocity profile. A significant problem with the surface wave inversion is its intrinsic non-uniqueness, and although this problem is widely recognized, there have not been systematic efforts to develop approaches to reduce the pervasive uncertainty that affects the velocity profiles determined by the inversion. Non-uniqueness cannot be easily studied in a nonlinear inverse problem such as Rayleigh-wave inversion and the only way to understand its nature is by numerical investigation which can get computationally expensive and inevitably time consuming. Regarding the variety of the parameters affecting the surface wave inversion and possible non-uniqueness induced by them, a technique should be established which is not controlled by the non-uniqueness that is already affecting the surface wave inversion. An efficient and repeatable technique is proposed and tested to overcome the non-uniqueness problem; multiple inverted shear-wave velocity profiles are used in a wavenumber integration technique to generate synthetic time series resembling the geophone recordings. The similarity between synthetic and observed time series is used as an additional tool along with the similarity between the theoretical and experimental dispersion curves. The proposed method is proven to be effective through synthetic and real world examples. In these examples, the nature of the non-uniqueness is discussed and its existence is shown. Using the proposed technique, inverted velocity profiles are estimated and effectiveness of this technique is evaluated; in the synthetic example, final inverted velocity profile is compared with the initial target velocity model, and in the real world example, final inverted shear-wave velocity profile is compared with the velocity model from independent measurements in a nearby borehole. Real world example shows that it is possible to overcome the non-uniqueness and distinguish the representative velocity profile for the site that also matches well with the borehole measurements
Emerging Technologies and Advanced Analyses for Non-Invasive Near-Surface Site Characterization
This dissertation introduces novel techniques for estimating the soil small-strain shear modulus (Gmax) and damping ratio (D), crucial for modeling soil behavior in various geotechnical engineering problems. For Gmax estimation, a machine learning approach is proposed, capable of generating two-dimensional (2D) images of the subsurface shear wave velocity, which is directly related to Gmax. The dissertation also presents a method for estimating frequency dependent attenuation coefficients from ambient vibrations collected using 2D arrays of seismic sensors deployed across the ground surface. These attenuation coefficients can then be used in an inversion process to estimate D. The developed techniques for Gmax and D estimation have undergone rigorous validation and testing through synthetic simulations and field experiments, demonstrating their effectiveness. Furthermore, the dissertation presents a comprehensive dataset collected using cutting-edge seismic sensing technologies, including distributed acoustic sensing, three-component seismometers, and a large mobile shaker truck. This dataset has been archived and made publicly available, aiding researchers worldwide in developing and testing new non-invasive imaging techniques. Finally, the dissertation concludes with a review and comparison of recent advancements in non-invasive subsurface imaging techniques and their application at the same site
Surface wave analysis for building near surface velocity models: established approaches and new perspectives
Today, surface-wave analysis is widely adopted for building near-surface S-wave velocity models. The surface-wave method is under continuous and rapid evolution, also thanks to the lively scientific debate among different disciplines, and interest in the technique has increased significantly during the last decade. A comprehensive review of the literature in the main scientific journals provides historical perspective, methodological issues, applications, and most-promising recent approaches. Higher modes in the inversion and retrieval of lateral variations are dealt with in great detail, and the current scientific debate on these topics is reported.Abest-practices guideline is also outline
Development of an advanced geostatistical model for shear wave velocity profiles to manage uncertainties and variabilities in Ground Response Analyses
L'abstract è presente nell'allegato / the abstract is in the attachmen