711,517 research outputs found

    Evidence for Two Different Solid Phases of Two Dimensional Electrons in High Magnetic Fields

    Full text link
    We have performed RF spectroscopy on very high quality two dimensional electron systems in the high magnetic field insulating phase, usually associated with a Wigner solid (WS) pinned by disorder. We have found two different resonances in the frequency dependent real diagonal conductivity spectrum and we interpret them as coming from \textit{two} different pinned solid phases (labeled as "WS-A" and "WS-B"). The resonance of WS-A is observable for Landau level filling ν\nu<<2/9 (but absent around the ν\nu=1/5 fractional quantum Hall effect (FQHE)); it then \textit{crosses over} for ν\nu<<0.18 to the different WS-B resonance which dominates the spectrum at ν\nu<<0.125. Moreover, WS-A resonance is found to show dispersion with respect to the size of transmission line, indicating that WS-A has a large correlation length (exceeding ∼\sim100 μ\mum); in contrast no such behavior is found for WS-B. We suggest that quantum correlations such as those responsible for FQHE may play an important role in giving rise to such different solids.Comment: 4 pages, 3 figure

    Genetic contributions to visuospatial cognition in Williams syndrome: insights from two contrasting partial deletion patients

    Get PDF
    Background Williams syndrome (WS) is a rare neurodevelopmental disorder arising from a hemizygotic deletion of approximately 27 genes on chromosome 7, at locus 7q11.23. WS is characterised by an uneven cognitive profile, with serious deficits in visuospatial tasks in comparison to relatively proficient performance in some other cognitive domains such as language and face processing. Individuals with partial genetic deletions within the WS critical region (WSCR) have provided insights into the contribution of specific genes to this complex phenotype. However, the combinatorial effects of different genes remain elusive. Methods We report on visuospatial cognition in two individuals with contrasting partial deletions in the WSCR: one female (HR), aged 11 years 9 months, with haploinsufficiency for 24 of the WS genes (up to GTF2IRD1), and one male (JB), aged 14 years 2 months, with the three most telomeric genes within the WSCR deleted, or partially deleted. Results Our in-depth phenotyping of the visuospatial domain from table-top psychometric, and small- and large-scale experimental tasks reveal a profile in HR in line with typically developing controls, albeit with some atypical features. These data are contrasted with patient JB’s atypical profile of strengths and weaknesses across the visuospatial domain, as well as with more substantial visuospatial deficits in individuals with the full WS deletion. Conclusions Our findings point to the contribution of specific genes to spatial processing difficulties associated with WS, highlighting the multifaceted nature of spatial cognition and the divergent effects of genetic deletions within the WSCR on different components of visuospatial ability. The importance of general transcription factors at the telomeric end of the WSCR, and their combinatorial effects on the WS visuospatial phenotype are also discussed
    • …
    corecore