68,430 research outputs found

    The key role of nitric oxide in hypoxia: hypoxic vasodilation and energy supply-demand matching

    No full text
    Significance: a mismatch between energy supply and demand induces tissue hypoxia with the potential to cause cell death and organ failure. Whenever arterial oxygen concentration is reduced, increases in blood flow - 'hypoxic vasodilation' - occur in an attempt to restore oxygen supply. Nitric oxide is a major signalling and effector molecule mediating the body's response to hypoxia, given its unique characteristics of vasodilation (improving blood flow and oxygen supply) and modulation of energetic metabolism (reducing oxygen consumption and promoting utilization of alternative pathways). Recent advances: this review covers the role of oxygen in metabolism and responses to hypoxia, the hemodynamic and metabolic effects of nitric oxide, and mechanisms underlying the involvement of nitric oxide in hypoxic vasodilation. Recent insights into nitric oxide metabolism will be discussed, including the role for dietary intake of nitrate, endogenous nitrite reductases, and release of nitric oxide from storage pools. The processes through which nitric oxide levels are elevated during hypoxia are presented, namely (i) increased synthesis from nitric oxide synthases, increased reduction of nitrite to nitric oxide by heme- or pterin-based enzymes and increased release from nitric oxide stores, and (ii) reduced deactivation by mitochondrial cytochrome c oxidase. Critical issues: several reviews covered modulation of energetic metabolism by nitric oxide, while here we highlight the crucial role NO plays in achieving cardiocirculatory homeostasis during acute hypoxia through both vasodilation and metabolic suppression Future directions: we identify a key position for nitric oxide in the body's adaptation to an acute energy supply-demand mismatc

    Alpha1 -adrenergic stimulation selectively enhances endothelium-mediated vasodilation in rat cremaster arteries.

    Get PDF
    We have systematically investigated how vascular smooth muscle α1 -adrenoceptor activation impacts endothelium-mediated vasodilation in isolated, myogenically active, rat cremaster muscle 1A arteries. Cannulated cremaster arteries were pressurized intraluminally to 70 mmHg to induce myogenic tone, and exposed to vasoactive agents via bath superfusion at 34°C. Smooth muscle membrane potential was measured via sharp microelectrode recordings in pressurized, myogenic arteries. The α1 -adrenergic agonist phenylephrine (25-100 nmol/L) produced further constriction of myogenic arteries, but did not alter the vasorelaxant responses to acetylcholine (0.3 μmol/L), SKA-31 (an activator of endothelial Ca2+ -dependent K+ channels) (3 μmol/L) or sodium nitroprusside (10 μmol/L). Exposure to 0.25-1 μmol/L phenylephrine or 1 μmol/L norepinephrine generated more robust constrictions, and also enhanced the vasodilations evoked by acetylcholine and SKA-31, but not by sodium nitroprusside. In contrast, the thromboxane receptor agonist U46619 (250 nmol/L) dampened responses to all three vasodilators. Phenylephrine exposure depolarized myogenic arteries, and mimicking this effect with 4-aminopyridine (1 mmol/L) was sufficient to augment the SKA-31-evoked vasodilation. Inhibition of L-type Ca2+ channels by 1 μmol/L nifedipine decreased myogenic tone, phenylephrine-induced constriction and prevented α1 -adrenergic enhancement of endothelium-evoked vasodilation; these latter deficits were overcome by exposure to 3 and 10 μmol/L phenylephrine. Mechanistically, augmentation of ACh-evoked dilation by phenylephrine was dampened by eNOS inhibition and abolished by blockade of endothelial KCa channels. Collectively, these data suggest that increasing α1 -adrenoceptor activation beyond a threshold level augments endothelium-evoked vasodilation, likely by triggering transcellular signaling between smooth muscle and the endothelium. Physiologically, this negative feedback process may serve as a "brake" to limit the extent of vasoconstriction in the skeletal microcirculation evoked by the elevated sympathetic tone

    The Role of Sex Hormones in Inducing Maternal Uterine Remodeling and Vasodilation During Pregnancy

    Get PDF
    Uterine vascular adaptations such as vessel growth and vasodilation are needed to facilitate the more than 10-fold increase of uteroplacental blood flow (UPBF) during pregnancy. Adverse adaptations may result in pregnancy complications such as preeclampsia and intrauterine growth restriction. Pregnancy milieu, placentation and the attendant change in wall shear stress are major regulators of uterine vascular adaptation. In this study, we aimed at delineating : (1) the contribution of these regulators in vascular remodeling and (2) the effects of pregnancy milieu (estrogen and progesterone) alone and in combination with wall shear stress on the vascular reactivity. Using Sprague Dawley rats as the animal model, three surgical methods were utilized: (1) unilateral oviductal ligation (OHL) that restricts pregnancy to one uterine horn; (2) cervical-end main uterine artery and vein ligation (VL) that alters the hemodynamic pattern of the UPBF and wall shear stress; and (3) ovariectomy (OVX) with the implant of estrogen + progesterone pellet (0.5 and 100 mg, respectively). A segment of ovarian-end main uterine artery from each uterine horn was dissected, cannulated, and pressurized in an arteriograph system. Lumen diameters in response to phenylephrine (vasoconstrictor) and acetylcholine (vasodilator) were measured. Passive lumen diameters, wall thickness, vessel cross-sectional area, and distensibility were also measured under a microscope. Significant remodeling was seen in OVX rats in response to hormone replacement (p=0.0457); however, the extent of remodeling did not reach that seen in the nonpregnant horn of OHL rats. No significant change in wall thickness, cross-sectional area or wall: lumen ratio was found in OVX (+pellet), compared to OVX (-pellet) rats. Estrogen + progesterone had no significant effect on the sensitivity to phenylephrine or acetylcholine. In conclusion, estrogen + progesterone does have a significant effect on vascular remodeling. The presence of other factors, such as placentation, likely augment this process

    Additive effect of non-alcoholic fatty liver disease on metabolic syndrome-related endothelial dysfunction in hypertensive patients

    Get PDF
    Metabolic syndrome (MS) is characterized by an increased risk of incident diabetes and cardiovascular (CV) events, identifying insulin resistance (IR) and endothelial dysfunction as key elements. Moreover, non-alcoholic fatty liver disease (NAFLD) is bidirectionally linked with MS as a consequence of metabolic and inflammatory abnormalities. We addressed the question if the evolution in NAFLD might worsen endothelium-dependent vasodilating response in MS hypertensives. We recruited 272 Caucasian newly-diagnosed never-treated hypertensive outpatients divided into three groups according to the presence/absence of MS alone or in combination with NAFLD. MS and NAFLD were defined according to the National Cholesterol Education Program-Adult Treatment Panel III (NCEP-ATPIII) and non-invasive fatty liver index, respectively. We determined IR by using the homeostasis model assessment (HOMA) index. Vascular function, as forearm blood flow (FBF), was determined through strain-gauge plethysmography after intra-arterial infusion of acetylcholine (ACh) and sodium nitroprusside. MS+NAFLD+ group showed worse metabolic, inflammatory and vascular profiles compared with MS-NAFLD- and MS+NAFLD-. HOMA resulted in being the strongest predictor of FBF both in the MS+NAFLD- and in the MS+NAFLD+ groups, accounting for 20.5% and 33.2% of its variation, respectively. In conclusion, we demonstrated that MS+NAFLD+ hypertensives show a worse endothelium-dependent vasodilation compared with MS+NAFLD-, allowing for consideration of NAFLD as an early marker of endothelial dysfunction in hypertensives

    Multidisciplinary Consideration of Potential Pathophysiologic Mechanisms of Paradoxical Erythema with Topical Brimonidine Therapy.

    Get PDF
    Rosacea is a chronic inflammatory disease with transient and non-transient redness as key characteristics. Brimonidine is a selective α2-adrenergic receptor (AR) agonist approved for persistent facial erythema of rosacea based on significant efficacy and good safety data. The majority of patients treated with brimonidine report a benefit; however, there have been sporadic reports of worsening erythema after the initial response. A group of dermatologists, receptor physiology, and neuroimmunology scientists met to explore potential mechanisms contributing to side effects as well as differences in efficacy. We propose the following could contribute to erythema after application: (1) local inflammation and perivascular inflammatory cells with abnormally functioning ARs may lead to vasodilatation; (2) abnormal saturation and cells expressing different AR subtypes with varying ligand affinity; (3) barrier dysfunction and increased skin concentrations of brimonidine with increased actions at endothelial and presynaptic receptors, resulting in increased vasodilation; and (4) genetic predisposition and receptor polymorphism(s) leading to different smooth muscle responses. Approximately 80% of patients treated with brimonidine experience a significant improvement without erythema worsening as an adverse event. Attention to optimizing skin barrier function, setting patient expectations, and strategies to minimize potential problems may possibly reduce further the number of patients who experience side effects.FundingGalderma International S.A.S., Paris, France

    Episcleral Venous Pressure and the Ocular Hypotensive Effects of Topical and Intracameral Prostaglandin Analogs.

    Get PDF
    There is a limit beyond which increasing either the concentration of a prostaglandin analog (PGA) or its dosing frequency fails to produce increases in ocular hypotensive efficacy with topical dosing. Intracameral PGA dosing with a bimatoprost implant, however, does not exhibit the same intraocular pressure (IOP)-lowering plateau at studied concentrations, and the maximum-achievable ocular hypotensive effects are not yet known. This suggests that the bimatoprost intracameral implant may activate another mechanism of action in addition to the mechanism(s) activated by topical application. Episcleral venous pressure (EVP) is a key determinant of IOP, and experimental manipulation of the episcleral vasculature can change both EVP and IOP. The recent observation that topical and intracameral PGA drug delivery routes produce different patterns of conjunctival hyperemia suggested that the differences in the IOP-lowering profiles may be caused by differing effects on the episcleral vasculature. Recent experiments in animals have shown that topical PGAs increase EVP, while the bimatoprost intracameral implant causes a smaller, transient increase in EVP, followed by a sustained decrease. The increase in EVP could be limiting the IOP-lowering efficacy of topical PGAs. In contrast, the decrease in EVP associated with the bimatoprost implant could explain its enhanced IOP-lowering effects. Further research on EVP as a target for IOP lowering is indicated to improve our understanding of this potentially important pathway for treating patients with glaucoma

    Effects of acute consumption of fruit and vegetable puree-based drinks on vasodilation and oxidative status

    Get PDF
    Epidemiological studies indicate that diets rich in fruits and vegetables (F&V) are protective against cardiovascular diseases (CVD). Pureed \&V products retain many beneficial components, including flavonoids, carotenoids, vitamin C and dietary fibres. This study aimed to establish the physiological effects of acute ingestion of F&V puree-based drink (FVPD) on vasodilation, antioxidant status, phytochemical bioavailability and other CVD risk factors. 24 Subjects, aged 30-70 years, completed the randomised, single-blind, controlled, crossover test meal study. Subjects consumed 400 ml FVPD, or fruit-flavoured sugar-matched control, after following a low-flavonoid diet for 5 days. Blood and urine samples were collected throughout the study day and vascular reactivity was assessed at 90-minute intervals using laser Doppler iontophoresis (LDI). FVPD significantly increased plasma vitamin C (P=0.002) and total nitrate/nitrite (P=0.001) concentrations. There was a near significant time by treatment effect on ex vivo LDL oxidation (P=0.068), with a longer lag phase after consuming FVPD. During the 6 hours after juice consumption the antioxidant capacity of plasma increased significantly (P=0.003) and there was a simultaneous increase in plasma and urinary phenolic metabolites (P=0.05). There were significantly lower glucose and insulin peaks after ingestion of FVPD compared with control (P=0.019 and P=0.003) and a trend towards increased endothelium-dependent vasodilation following FVPD consumption (P=0.061). Overall, FVPD consumption significantly increased plasma vitamin C and total nitrate/nitrite concentrations, with a trend towards increased endothelium-dependent vasodilation. Pureed F&V products are useful vehicles for increasing micronutrient status, plasma antioxidant capacity and in vivo NO generation, which may contribute to CVD risk reduction

    Additive effect of non-alcoholic fatty liver disease on metabolic syndrome-related endothelial dysfunction in hypertensive patients

    Get PDF
    Metabolic syndrome (MS) is characterized by an increased risk of incident diabetes and cardiovascular (CV) events, identifying insulin resistance (IR) and endothelial dysfunction as key elements. Moreover, non-alcoholic fatty liver disease (NAFLD) is bidirectionally linked with MS as a consequence of metabolic and inflammatory abnormalities. We addressed the question if the evolution in NAFLD might worsen endothelium-dependent vasodilating response in MS hypertensives. We recruited 272 Caucasian newly-diagnosed never-treated hypertensive outpatients divided into three groups according to the presence/absence of MS alone or in combination with NAFLD. MS and NAFLD were defined according to the National Cholesterol Education Program-Adult Treatment Panel III (NCEP-ATPIII) and non-invasive fatty liver index, respectively. We determined IR by using the homeostasis model assessment (HOMA) index. Vascular function, as forearm blood flow (FBF), was determined through strain-gauge plethysmography after intra-arterial infusion of acetylcholine (ACh) and sodium nitroprusside. MS+NAFLD+ group showed worse metabolic, inflammatory and vascular profiles compared with MS-NAFLD- and MS+NAFLD-. HOMA resulted in being the strongest predictor of FBF both in the MS+NAFLD- and in the MS+NAFLD+ groups, accounting for 20.5% and 33.2% of its variation, respectively. In conclusion, we demonstrated that MS+NAFLD+ hypertensives show a worse endothelium-dependent vasodilation compared with MS+NAFLD-, allowing for consideration of NAFLD as an early marker of endothelial dysfunction in hypertensives

    Diabetes mellitus and ischemic heart disease. the role of ion channels

    Get PDF
    Diabetes mellitus is one the strongest risk factors for cardiovascular disease and, in particular, for ischemic heart disease (IHD). The pathophysiology of myocardial ischemia in diabetic patients is complex and not fully understood: some diabetic patients have mainly coronary stenosis obstructing blood flow to the myocardium; others present with coronary microvascular disease with an absence of plaques in the epicardial vessels. Ion channels acting in the cross-talk between the myocardial energy state and coronary blood flow may play a role in the pathophysiology of IHD in diabetic patients. In particular, some genetic variants for ATP-dependent potassium channels seem to be involved in the determinism of IH
    corecore