6,357 research outputs found
Recommended from our members
Using airborne lidar to discern age classes of cottonwood trees in a riparian area
Airborne lidar (light detecting and ranging) is a useful tool for probing the structure of forest canopies. Such information is not readily available from other remote sensing methods and is essential for modern forest inventories. In this study, small-footprint lidar data were used to estimate biophysical properties of young, mature, and old cottonwood trees in the San Pedro River basin near Benson, Arizona. The lidar data were acquired in June 2004, using Optech's 1233 ALTM during flyovers conducted at an altitude of 600 m. Canopy height, crown diameter, stem dbh, canopy cover, and mean intensity of return laser pulses from the canopy surface were estimated for the cottonwood trees from the data. Linear regression models were used to develop equations relating lidar-derived tree characteristics with corresponding field acquired data for each age class of cottonwoods. The lidar estimates show a good degree of correlation with ground-based measurements. This study also shows that other parameters of young, mature, and old cottonwood trees such as height and canopy cover, when derived from lidar, are significantly different (P < 0.05). Additionally, mean crown diameters of mature and young trees are not statistically different at the study site (P = 0.31). The results illustrate the potential of airborne lidar data to differentiate different age classes of cottonwood trees for riparian areas quickly and quantitatively. Copyright © 2006 by the Society of American Foresters
Airborne and Terrestrial Laser Scanning Data for the Assessment of Standing and Lying Deadwood: Current Situation and New Perspectives
LiDAR technology is finding uses in the forest sector, not only for surveys in producing forests but also as a tool to gain a deeper understanding of the importance of the three-dimensional component of forest environments. Developments of platforms and sensors in the last decades have highlighted the capacity of this technology to catch relevant details, even at finer scales. This drives its usage towards more ecological topics and applications for forest management. In recent years, nature protection policies have been focusing on deadwood as a key element for the health of forest ecosystems and wide-scale assessments are necessary for the planning process on a landscape scale. Initial studies showed promising results in the identification of bigger deadwood components (e.g., snags, logs, stumps), employing data not specifically collected for the purpose. Nevertheless, many efforts should still be made to transfer the available methodologies to an operational level. Newly available platforms (e.g., Mobile Laser Scanner) and sensors (e.g., Multispectral Laser Scanner) might provide new opportunities for this field of study in the near future
Estimation of forest variables using airborne laser scanning
Airborne laser scanning can provide three-dimensional measurements of the forest canopy with high efficiency and precision. There are presently a large number of airborne laser scanning instruments in operation. The aims of the studies reported in this thesis were, to develop and validate methods for estimation of forest variables using laser data, and to investigate the influence of laser system parameters on the estimates. All studies were carried out in hemi-boreal forest at a test area in southwestern Sweden (lat. 58°30’N, long. 13°40’ E). Forest variables were estimated using regression models. On plot level, the Root Mean Square Error (RMSE) for mean tree height estimations ranged between 6% and 11% of the average value for different datasets and methods. The RMSE for stem volume estimations ranged between 19% and 26% of the average value for different datasets and methods. On stand level (area 0.64 ha), the RMSE was 3% and 11% of the average value for mean tree height and stem volume estimations, respectively. A simulation model was used to investigate the effect of different scanning angles on laser measurement of tree height and canopy closure. The effect of different scanning angles was different within different simulated forest types, e.g., different tree species. High resolution laser data were used for detection of individual trees. In total, 71% of the field measurements were detected representing 91% of the total stem volume. Height and crown diameter of the detected trees could be estimated with a RMSE of 0.63 m and 0.61 m, respectively. The magnitude of the height estimation errors was similar to what is usually achieved using field inventory. Using different laser footprint diameters (0.26 to 3.68 m) gave similar estimation accuracies. The tree species Norway spruce (Picea abies L. Karst.) and Scots pine (Pinus sylvestris L.) were discriminated at individual tree level with an accuracy of 95%. The results in this thesis show that airborne laser scanners are useful as forest inventory tools. Forest variables can be estimated on tree level, plot level and stand level with similar accuracies as traditional field inventories
Estimating Tropical Forest Structure Using a Terrestrial Lidar
Forest structure comprises numerous quantifiable biometric components and characteristics, which include tree geometry and stand architecture. These structural components are important in the understanding of the past and future trajectories of these biomes. Tropical forests are often considered the most structurally complex and yet least understood of forested ecosystems. New technologies have provided novel avenues for quantifying biometric properties of forested ecosystems, one of which is LIght Detection And Ranging (lidar). This sensor can be deployed on satellite, aircraft, unmanned aerial vehicles, and terrestrial platforms. In this study we examined the efficacy of a terrestrial lidar scanner (TLS) system in a tropical forest to estimate forest structure. Our study was conducted in January 2012 at La Selva, Costa Rica at twenty locations in a predominantly undisturbed forest. At these locations we collected field measured biometric attributes using a variable plot design. We also collected TLS data from the center of each plot. Using this data we developed relative vegetation profiles (RVPs) and calculated a series of parameters including entropy, Fast Fourier Transform (FFT), number of layers and plant area index to develop statistical relationships with field data.We developed statistical models using a series of multiple linear regressions, all of which converged on significant relationships with the strongest relationship being for mean crown depth (r2 = 0.88, p \u3c 0.001, RMSE = 1.04 m). Tree density was found to have the poorest significant relationship (r2 = 0.50, p \u3c 0.01, RMSE = 153.28 n ha-1). We found a significant relationship between basal area and lidar metrics (r2 = 0.75, p \u3c 0.001, RMSE = 3.76 number ha-1). Parameters selected in our models varied, thus indicating the potential relevance of multiple features in canopy profiles and geometry that are related to field-measured structure. Models for biomass estimation included structural canopy variables in addition to height metrics. Our work indicates that vegetation profiles from TLS data can provide useful information on forest structure
Predicting growing stock volume of Eucalyptus plantations using 3-D point clouds derived from UAV imagery and ALS data
Estimating forest inventory variables is important in monitoring forest resources and
mitigating climate change. In this respect, forest managers require flexible, non-destructive methods
for estimating volume and biomass. High-resolution and low-cost remote sensing data are increasingly
available to measure three-dimensional (3D) canopy structure and to model forest structural attributes.
The main objective of this study was to evaluate and compare the individual tree volume estimates
derived from high-density point clouds obtained from airborne laser scanning (ALS) and digital
aerial photogrammetry (DAP) in Eucalyptus spp. plantations. Object-based image analysis (OBIA)
techniques were applied for individual tree crown (ITC) delineation. The ITC algorithm applied
correctly detected and delineated 199 trees from ALS-derived data, while 192 trees were correctly
identified using DAP-based point clouds acquired fromUnmannedAerialVehicles(UAV), representing
accuracy levels of respectively 62% and 60%. Addressing volume modelling, non-linear regression
fit based on individual tree height and individual crown area derived from the ITC provided the
following results: Model E ciency (Mef) = 0.43 and 0.46, Root Mean Square Error (RMSE) = 0.030 m3
and 0.026 m3, rRMSE = 20.31% and 19.97%, and an approximately unbiased results (0.025 m3 and
0.0004 m3) using DAP and ALS-based estimations, respectively. No significant di erence was found
between the observed value (field data) and volume estimation from ALS and DAP (p-value from
t-test statistic = 0.99 and 0.98, respectively). The proposed approaches could also be used to estimate
basal area or biomass stocks in Eucalyptus spp. plantationsinfo:eu-repo/semantics/publishedVersio
Estimating forest structure in a tropical forest using field measurements, a synthetic model and discrete return lidar data
Tropical forests are huge reservoirs of terrestrial carbon and are experiencing rapid degradation and deforestation. Understanding forest structure proves vital in accurately estimating both forest biomass and also the natural disturbances and remote sensing is an essential method for quantification of forest properties and structure in the tropics. Our objective is to examine canopy vegetation profiles formulated from discrete return LIght Detection And Ranging (lidar) data and examine their usefulness in estimating forest structural parameters measured during a field campaign. We developed a modeling procedure that utilized hypothetical stand characteristics to examine lidar profiles. In essence, this is a simple method to further enhance shape characteristics from the lidar profile. In this paper we report the results comparing field data collected at La Selva, Costa Rica (10° 26′ N, 83° 59′ W) and forest structure and parameters calculated from vegetation height profiles and forest structural modeling. We developed multiple regression models for each measured forest biometric property using forward stepwise variable selection that used Bayesian information criteria (BIC) as selection criteria. Among measures of forest structure, ranging from tree lateral density, diameter at breast height, and crown geometry, we found strong relationships with lidar canopy vegetation profile parameters. Metrics developed from lidar that were indicators of height of canopy were not significant in estimating plot biomass (p-value = 0.31, r2 = 0.17), but parameters from our synthetic forest model were found to be significant for estimating many of the forest structural properties, such as mean trunk diameter (p-value = 0.004, r2 = 0.51) and tree density (p-value = 0.002, r2 = 0.43). We were also able to develop a significant model relating lidar profiles to basal area (p-value = 0.003, r2 = 0.43). Use of the full lidar profile provided additional avenues for the prediction of field based forest measure parameters. Our synthetic canopy model provides a novel method for examining lidar metrics by developing a look-up table of profiles that determine profile shape, depth, and height. We suggest that the use of metrics indicating canopy height derived from lidar are limited in understanding biomass in a forest with little variation across the landscape and that there are many parameters that may be gleaned by lidar data that inform on forest biometric properties
The Fire and Smoke Model Evaluation Experiment—A Plan for Integrated, Large Fire–Atmosphere Field Campaigns
The Fire and Smoke Model Evaluation Experiment (FASMEE) is designed to collect integrated observations from large wildland fires and provide evaluation datasets for new models and operational systems. Wildland fire, smoke dispersion, and atmospheric chemistry models have become more sophisticated, and next-generation operational models will require evaluation datasets that are coordinated and comprehensive for their evaluation and advancement. Integrated measurements are required, including ground-based observations of fuels and fire behavior, estimates of fire-emitted heat and emissions fluxes, and observations of near-source micrometeorology, plume properties, smoke dispersion, and atmospheric chemistry. To address these requirements the FASMEE campaign design includes a study plan to guide the suite of required measurements in forested sites representative of many prescribed burning programs in the southeastern United States and increasingly common high-intensity fires in the western United States. Here we provide an overview of the proposed experiment and recommendations for key measurements. The FASMEE study provides a template for additional large-scale experimental campaigns to advance fire science and operational fire and smoke models
Potential of ALOS2 and NDVI to estimate forest above-ground biomass, and comparison with lidar-derived estimates
Remote sensing supports carbon estimation, allowing the upscaling of field measurements to large extents. Lidar is considered the premier instrument to estimate above ground biomass, but data are expensive and collected on-demand, with limited spatial and temporal coverage. The previous JERS and ALOS SAR satellites data were extensively employed to model forest biomass, with literature suggesting signal saturation at low-moderate biomass values, and an influence of plot size on estimates accuracy. The ALOS2 continuity mission since May 2014 produces data with improved features with respect to the former ALOS, such as increased spatial resolution and reduced revisit time. We used ALOS2 backscatter data, testing also the integration with additional features (SAR textures and NDVI from Landsat 8 data) together with ground truth, to model and map above ground biomass in two mixed forest sites: Tahoe (California) and Asiago (Alps). While texture was useful to improve the model performance, the best model was obtained using joined SAR and NDVI (R2 equal to 0.66). In this model, only a slight saturation was observed, at higher levels than what usually reported in literature for SAR; the trend requires further investigation but the model confirmed the complementarity of optical and SAR datatypes. For comparison purposes, we also generated a biomass map for Asiago using lidar data, and considered a previous lidar-based study for Tahoe; in these areas, the observed R2 were 0.92 for Tahoe and 0.75 for Asiago, respectively. The quantitative comparison of the carbon stocks obtained with the two methods allows discussion of sensor suitability. The range of local variation captured by lidar is higher than those by SAR and NDVI, with the latter showing overestimation. However, this overestimation is very limited for one of the study areas, suggesting that when the purpose is the overall quantification of the stored carbon, especially in areas with high carbon density, satellite data with lower cost and broad coverage can be as effective as lidar
- …