247 research outputs found
Use and limitations of the Harmonic Halance Method for rub-impact phenomena in rotor-stator dynamics
International audienceIn the present paper, a Harmonic Balance Method (HBM) coupled with a pseudo-arc length continuation algorithm is presented for the prediction of the steady state behaviour of a rotor-stator contact problem. The ability of the HBM to reproduce the four most common phenomena encountered during rotor to stator contact situations (i.e. 'no-rub', 'full annular rub', 'partial rub' and 'backward whirl/whip') is investigated. A modified Jeffcott rotor model is used and results of the proposed algorithm are compared with traditional time marching solutions and analytical predictions. The advantages and limitations of the HBM for this kind of problem are analyzed. It is shown that the HBM is orders of magnitude faster than transient simulations, and provides very accurate results. However, in its current form it is unable to predict quasi-periodic behaviour. Detailed analysis of the transient solutions yields valuable information for the future extension of the HBM to efficient quasi-periodic simulations
Contact dynamic phenomena in rotating machines: active/passive considerations
There are machine operating regimes in which rotor/stator interactions may lead to problematic rotor dynamic behavior. For example, dynamic heat sources arising from seals, bearings and other rubbing stator components may cause rotor thermal bend instability. In active magnetic bearing (AMB) systems, the rotor may experience forward and backward whirl rubs with touchdown bearings (TDBs). In abnormal cases, rotor transient and bounce interactions with such bearings may involve highly localized and short duration contacts. This paper discusses certain contact phenomena that may occur in passive and active systems. For example, the rub induced spiral behavior arises from a combination of unbalance and a thermal input that moves slowly around the rotor, typically in passive rotor-bearing systems. However, the instability can be regarded as if arising from a closed-loop feedback system. Hence it is possible to analyze the phenomenon using techniques that have been developed for active control systems. Rotors levitated by AMBs are truly active, but there are fundamental issues that may arise when contact with TDBs occurs. AMB control and contact interactions are discussed together with the benefits for making the TDB an active element. The reason for this lies in the potential ability to control the contact dynamics and associated mechanical and thermal stresses. A prototype system is described
Continuation analysis of a nonlinear rotor system
Nonlinearities in rotating systems have been seen to cause a wide variety of rich phenomena; however, the understanding of these phenomena has been limited because numerical approaches typically rely on “brute force” time simulation, which is slow due to issues of step size and settling time, cannot locate unstable solution families, and may miss key responses if the correct initial conditions are not used. This work uses numerical continuation to explore the responses of such systems in a more systematic way. A simple isotropic rotor system with a smooth nonlinearity is studied, and the rotating frame is used to obtain periodic solutions. Asynchronous responses with oscillating amplitude are seen to initiate at certain drive speeds due to internal resonance, in a manner similar to that observed for nonsmooth rotor–stator contact systems in the previous literature. These responses are isolated, in the sense that they will only meet the more trivial synchronous responses in the limit of zero damping and out of balance forcing. In addition to increasing our understanding of the responses of these systems, the work establishes the potential of numerical continuation as a tool to systematically explore the responses of nonlinear rotor systems
Rotordynamic Instability Problems in High-Performance Turbomachinery 1996
The first rotordynamics workshop proceedings emphasized a feeling of uncertainty in predicting the stability of characteristics of high-performance turbomachinery. In the second workshop proceedings these uncertainties were reduced through programs established to systematically resolve problems, with emphasis on experimental validation of the forces that influence rotordynamics. In the third proceedings many programs for predicting or measuring forces and force coefficients in high-performance turbomachinery produced results. Data became available for designing new machines with enhanced stability characteristics or for upgrading existing machines. In the fourth proceedings there emerged trends towards a more unified view of rotordynamic instability problems and several encouraging new analytical developments. The fifth workshop supported the continuing trend toward a unified view with several new developments in the design and manufacture of new turbomachineries with enhanced stability characteristics along with new data and associated numerical/theoretical results. The sixth workshop report provided field experience and experimental results, and expanded the use of computational and control techniques with integration of damper, bearing, and eccentric seal operation results. The seventh workshop report provided field experiences, numerical, theoretical, and experimental results and control methods for seals, bearings, and dampers with some attention given to variable thermophysical properties and turbulence measurements, and introduction of two-phase flow results. In the present workshop, active magnetic bearings (AMB's) evolve into a new method of measuring rotordynamic coefficients with discussions on honeycomb seals, drop of magnetically supported rotors, seals, bearings and dampers with new data being reported. The intent of the workshop and this proceedings is to provide a continuing impetus for an understanding and resolution of these problems
Integration of parameter sensitivity to structural optimization of helicopter rotors for minimum vibration
12th International Conference on Vibrations in Rotating Machinery
Since 1976, the Vibrations in Rotating Machinery conferences have successfully brought industry and academia together to advance state-of-the-art research in dynamics of rotating machinery. 12th International Conference on Vibrations in Rotating Machinery contains contributions presented at the 12th edition of the conference, from industrial and academic experts from different countries. The book discusses the challenges in rotor-dynamics, rub, whirl, instability and more. The topics addressed include: - Active, smart vibration control - Rotor balancing, dynamics, and smart rotors - Bearings and seals - Noise vibration and harshness - Active and passive damping - Applications: wind turbines, steam turbines, gas turbines, compressors - Joints and couplings - Challenging performance boundaries of rotating machines - High power density machines - Electrical machines for aerospace - Management of extreme events - Active machines - Electric supercharging - Blades and bladed assemblies (forced response, flutter, mistuning) - Fault detection and condition monitoring - Rub, whirl and instability - Torsional vibration Providing the latest research and useful guidance, 12th International Conference on Vibrations in Rotating Machinery aims at those from industry or academia that are involved in transport, power, process, medical engineering, manufacturing or construction
Steady-state dynamic behavior of an auxiliary bearing supported rotor system
This paper investigates the steady-state responses of a rotor system supported by auxiliary bearings in which there is a clearance between the rotor and the inner race of the bearing. A simulation model based upon the rotor of a production jet engine is developed and its steady-state behavior is explored over a wide range of operating conditions for various parametric configurations. Specifically, the influence of rotor imbalance, support stiffness, and damping is studied. It is found that imbalance may change the rotor responses dramatically in terms of frequency contents at certain operating speeds. Subharmonic responses of 2nd order through 10th order are all observed except the 9th order. Chaotic phenomenon is also observed. Jump phenomena (or double-valued responses) of both hard-spring type and soft-spring type are shown to occur at low operating speeds for systems with low auxiliary bearing damping or large clearance even with relatively small imbalance. The effect of friction between the shaft and the inner race of the bearing is also discussed
Dynamic Analysis, Identification and Control Studies of Aero-Engine Model Rotor-Bearing Systems
Aero-engines have high speed rotors carrying multi-stage turbine and compressor discs. Such systems need continuous monitoring during the operating regime. These rotors are mounted on ball bearings supported with squeeze film dampers and connected to stator casings. The motions of bearings and rotor are influenced by each other and therefore such a system requires structural dynamic studies. These rotors involve several nonlinear factors including contact forces, varying compliance vibration of ball bearing, nonlinear oil-film force of squeeze film damper etc Solving such nonlinear dynamic problems using the traditional transfer matrix method, modal synthesis approach, finite element method or impedance coupling technique is therefore a challenging task.
Present work focuses on modelling of rotors using ball bearing nonlinearities along with nonlinear secondary transient excitations using finite element modelling. In order to validate the finite element model, preliminary dynamic analysis is carried out using linear spring-damper bearing elements. Results are illustrated both for LP rotor model and twin-spool rotor. Initially, the natural frequencies obtained from the computer program based on Timoshenko beam elements are validated with ANSYS results. Further, the results are also validated with those obtained from impact hammer tests on a scaled dual disk rotor-bearing system. To utilize this finite element model, the time and frequency-domain response studies are conducted with double-row ball bearing forces, rub-impact forces, Muszynska’s gas transients along with squeeze-film forces. In all the cases, differences from simple rotor supported by single-row ball bearings with only unbalance excitations have been reported. Using the fundamental frequency and its amplitude, an inverse modelling approach is applied to predict the parameters of rotor bearing system such as increased bearing clearance, changes in disc unbalances and the centralizing spring constants in squeeze-film damper. In this regard, a trained model of 3-layer perceptron neural network model is employed. In the second study, changes in dynamic response due to waviness and race-way defects in ball-bearings are first studied using modified contact force relations. Using this data, type of bearing fault is estimated from the statistical parameters of the time-domain signal by training an unsupervised Kohenen’s neural network model. Here, the simulated data is collected from the rotor over an operating speed range. In the third study, the additional stiffness of rotor due to rub-impact forces is identified from optimization modelling. Such identification of rotor stiffening effect using finite element modelling is a new concept.
Two types of control studies are proposed to minimize the amplitudes of rotor during the critical operating conditions. Semi active electromagnetic damper design helps in reducing vibration amplitudes of the LP rotor over a frequency range of interest. Here, the damper comprises of an electro-magnet and a spring. The required current and spring stiffness are identified from the basic relations and the results of control are illustrated with a two-disc LP rotor model. In active controller design, an electromagnetic actuator model is employed. The nominal gap maintained between the rotor and actuator coils is used in computing the actuator force. A proportional derivative (PD) control strategy is used to estimate the required forces. A neural network based alternate control scheme also proposed to compute the required actuator forces.
In overall, the work focussed on the dynamic analysis of dual disc rotor model subjected to parametric nonlinear bearing loads under the action of various external forces and some controller design aspects applicable to this rotor
- …