2 research outputs found

    ommodity price forecasting using ARIMA-GARCH models and neural networks with wavelets: old technologies - new results

    Get PDF
    O objetivo principal do trabalho aqui apresentado foi explorar a aplicação de uma metodologia capaz de decompor uma série temporal via ondaletas, conjuntamente com os modelos econométricos e de redes neurais para a previsão de variáveis. Adicionalmente, foi comparada a qualidade de previsões de sucessões cronológicas aplicadas ao estudo da commodity da soja. O diferencial do trabalho baseia-se na realização das previsões dentro das subséries decompostas por uma ondaleta e na obtenção de estimativas via reconstrução da série temporal. Pela análise dos dados da saca de 60 quilos de soja, os resultados foram particularmente satisfatórios quando se trabalhou com o filtro de ondaletas em uma rede neural recorrente.El objetivo principal de este trabajo es explorar la aplicación de una metodología capaz de descomponer una serie temporal con wavelets, en conjunto con los modelos econométricos y de redes neuronales para la predicción de variables. Además, el trabajo compara la calidad de predicciones de sucesiones cronológicas aplicadas al estudio del commodity soya. Se realizan predicciones dentro de las subseries descompuestas por wavelets y se obtienen estimaciones por medio de la reconstrucción de la serie temporal. De acuerdo con el análisis de los datos para la bolsa de 60 quilos de soya, los resultados son particularmente satisfactorios cuando se trabaja con el filtro de wavelets en una red neuronal recurrenteThe main objective of this study was to explore the possibility of applying a methodology capable of decomposing a time series through wavelets, in conjunction with econometric and neural network models, to forecast variables. The authors also compared the quality of the forecasts of chronological successions as applied to the study of a commodity, soy. The distinguishing feature of this study is based on the realization of the forecasts within the subseries decomposed by a wavelet and on obtaining estimates through reconstruction of the time series. From the analysis of the data for a 60 kg sack of soy, the results obtained were particularly satisfactory when using a wavelet filter in a recurrent neural network

    Uma Aplicação de redes neurais artificiais recorrentes (RTRL) e processos ARIMA-GARCH para predição da série de preços da soja

    Full text link
    Neste artigo é realizado um estudo comparativo quanto à eficiência deprevisão de séries temporais utilizando processos ARIMA-GARCH e redes neurais artificiais (RNA) treinadas com o algoritmo de aprendizagem recorrente em tempo real (RTRL – real time recurrent learning). Como experimento, a série de preços da saca de soja de 60 Kg é usada para realizar a comparação entre as duas técnicas. São realizadas previsões de 1 a 10 passos à frente, estes valores de janelas de previsão foram escolhidos arbitrariamente. Tanto o modelamento usando RNA como os processos ARIMA-GARCH exigem a transformação dos dados da série original. Os resultados das previsões são apresentados em termos dos valores da série no nível, ou seja, tem a mesma forma da série original. Podese verificar que as previsões das redes neurais tiveram desempenho superior quando comparadas aos resultados dos modelos econométricos tradicionais.</jats:p
    corecore