1,592 research outputs found
High fidelity thrust model for solar photon sailing
Taking into consideration the importance of a detailed model in the trajectory propagation, three space missions using solar photon sailing has been studied with a different thrust model. Then, an equipment has been designed and built to measure the deformation of a real sample of solar sail on several work conditions. An analysis of the deformations and they distributions has been taken in account to extrapolate a more accurate model for thrust. A comparison between models in function of the sail parameters has been presented to compare the optimal time of travel to reach a circular-to-circular orbital change
NASA Innovative Advanced Concepts (NIAC) Phase 1 Final Report: Venus Landsailer Zephyr
Imagine sailing across the hot plains of Venus! A design for a craft to do just this was completed by the COncurrent Multidisciplinary Preliminary Assessment of Space Systems (COMPASS) Team for the NASA Innovative Advanced Concepts (NIAC) project. The robotic craft could explore over 30 km of surface of Venus, driven by the power of the wind
The effect of environmental plasma interactions on the performance of the solar sail system
Interaction between the solar sail and the natural plasma environment were examined for deleterious impacts upon the operation of the sail and its associated payload. Electrostatic charging of the sail in the solar wind and in near earth environment were examined. Deployment problems were studied. An analysis of electromechanical oscillations coupling the sail to the natural plasma was performed. As a result of these studies, it was concluded that none of these effects will have a significant negative impact upon the sail operation. The natural environment will be significantly perturbed and this will preclude measurements of electric and magnetic fields from an attached payload
Quantum effects on Lagrangian points and displaced periodic orbits in the Earth-Moon system
Recent work in the literature has shown that the one-loop long distance quantum corrections to the Newtonian potential imply tiny but observable effects in the restricted three-body problem of celestial mechanics, i.e., at the Lagrangian libration points of stable equilibrium the planetoid is not exactly at equal distance from the two bodies of large mass, but the Newtonian values of its coordinates are changed by a few millimeters in the Earth-Moon system. First, we assess such a theoretical calculation by exploiting the full theory of the quintic equation, i.e., its reduction to Bring-Jerrard form and the resulting expression of roots in terms of generalized hypergeometric functions. By performing the numerical analysis of the exact formulas for the roots, we confirm and slightly improve the theoretical evaluation of quantum corrected coordinates of Lagrangian libration points of stable equilibrium. Second, we prove in detail that also for collinear Lagrangian points the quantum corrections are of the same order of magnitude in the Earth-Moon system. Third, we discuss the prospects to measure, with the help of laser ranging, the above departure from the equilateral triangle picture, which is a challenging task. On the other hand, a modern version of the planetoid is the solar sail, and much progress has been made, in recent years, on the displaced periodic orbits of solar sails at all libration points, both stable and unstable. The present paper investigates therefore, eventually, a restricted three-body problem involving Earth, Moon and a solar sail. By taking into account the one-loop quantum corrections to the Newtonian potential, displaced periodic orbits of the solar sail at libration points are again found to exist
Search for a Solution of the Pioneer Anomaly
In 1972 and 1973 the Pioneer 10 and 11 missions were launched. They were the
first to explore the outer solar system and achieved stunning breakthroughs in
deep-space exploration. But beginning in about 1980 an unmodeled force of \sim
8 \times 10^{-8} cm/s^2, directed approximately towards the Sun, appeared in
the tracking data. It later was unambiguously verified as being in the data and
not an artifact. The cause remains unknown (although radiant heat remains a
likely origin). With time more and more effort has gone into understanding this
anomaly (and also possibly related effects). We review the situation and
describe ongoing programs to resolve the issue.Comment: 24 pages 8 figure
- …