112,541 research outputs found

    Hybrid tip selection algorithm in IOTA

    Get PDF
    Distributed Ledger Technology (DLT) refers to the technical architecture that enables simultaneous access, validation, and record of transactions in an immutable way over a network. IOTA is a distributed ledger developed to record and send transactions between nodes in the Internet of Things (IoT) design. Node is an electronic device that can create, receive, or transmit transactions over the IOTA network, known as the tangle. Every node in IOTA wants to submit a transaction. The network will allow nodes to submit their transaction, only after they run the Tip Selection Algorithm (TSA). TSA is an essential part of the IOTA tangle. The term "tips" refers to transactions that are still waiting to be approved by other nodes. The unverified transactions are called orphan tips, meaning that orphan transactions are not approved by any node. Nodes in the tangle that approve older transactions are called lazy nodes, and transactions submitted by lazy nodes are called lazy tips. There should be a trade-off between verifying a transaction (orphan) and how quickly a transaction is verified (lazy tips). The importance of the TSA is to balance the number of orphan transactions and lazy tips. Our contribution in this thesis is to make adjustments in the TSAs by assigning adaptive values for the TSAs. Parameter α is a determining factor in the TSA algorithms to adjust the number of lazy and orphan tips. In this thesis, we propose a new hybrid TSA algorithm. The hybrid TSA employs a recursive walk with a variable α parameter. In the experimental analysis of the thesis, we measured the orphan and lazy tips for different TSA algorithms from the output data generated by the IOTA simulator. The result shows that the hybrid TSA can effectively eliminate the number of lazy tips

    The Stability and the Security of the Tangle

    Get PDF
    In this paper we study the stability and the security of the distributed data structure at the base of the IOTA protocol, called the Tangle. The contribution of this paper is twofold. First, we present a simple model to analyze the Tangle and give the first discrete time formal analyzes of the average number of unconfirmed transactions and the average confirmation time of a transaction. Then, we define the notion of assiduous honest majority that captures the fact that the honest nodes have more hashing power than the adversarial nodes and that all this hashing power is constantly used to create transactions. This notion is important because we prove that it is a necessary assumption to protect the Tangle against double-spending attacks, and this is true for any tip selection algorithm (which is a fundamental building block of the protocol) that verifies some reasonable assumptions. In particular, the same is true with the Markov Chain Monte Carlo selection tip algorithm currently used in the IOTA protocol. Our work shows that either all the honest nodes must constantly use all their hashing power to validate the main chain (similarly to the Bitcoin protocol) or some kind of authority must be provided to avoid this kind of attack (like in the current version of the IOTA where a coordinator is used). The work presented here constitute a theoretical analysis and cannot be used to attack the current IOTA implementation. The goal of this paper is to present a formalization of the protocol and, as a starting point, to prove that some assumptions are necessary in order to defend the system again double-spending attacks. We hope that it will be used to improve the current protocol with a more formal approach

    Metamorphic IOTA

    Get PDF
    IOTA opened recently a new line of research in distributed ledgers area by targeting algorithms that ensure a high throughput for the transactions generated in IoT systems. Transactions are continuously appended to an acyclic structure called tangle and each new transaction selects as parents two existing transactions (called tips) that it approves. G-IOTA, a very recent improvement of IOTA, targets to protect tips left behind offering hence a good confidence level. However, this improvement had a cost: the use of an additional tip selection mechanism which may be critical in IoT systems since it needs additional energy consumption. In this paper we propose a new metamorphic algorithm for tip selection that offers the best guaranties of both IOTA and G-IOTA. Our contribution is two fold. First, we propose a parameterized algorithm, E-IOTA, for tip selection which targets to reduce the number of random walks executed in previous versions (IOTA and G-IOTA) while maintaining the same security guaranties as IOTA and the same confidence level and fairness with respect to tips selection as G-IOTA. Then we propose a formal analysis of the security guaranties offered by E-IOTA against various attacks mentioned in the original IOTA proposal (e.g. large weight attack, parasite chain attack and splitting attack). Interestingly, to the best of our knowledge this is the first formal analysis of the security guaranties of IOTA and its derivatives

    Consistent Sensor, Relay, and Link Selection in Wireless Sensor Networks

    Full text link
    In wireless sensor networks, where energy is scarce, it is inefficient to have all nodes active because they consume a non-negligible amount of battery. In this paper we consider the problem of jointly selecting sensors, relays and links in a wireless sensor network where the active sensors need to communicate their measurements to one or multiple access points. Information messages are routed stochastically in order to capture the inherent reliability of the broadcast links via multiple hops, where the nodes may be acting as sensors or as relays. We aim at finding optimal sparse solutions where both, the consistency between the selected subset of sensors, relays and links, and the graph connectivity in the selected subnetwork are guaranteed. Furthermore, active nodes should ensure a network performance in a parameter estimation scenario. Two problems are studied: sensor and link selection; and sensor, relay and link selection. To solve such problems, we present tractable optimization formulations and propose two algorithms that satisfy the previous network requirements. We also explore an extension scenario: only link selection. Simulation results show the performance of the algorithms and illustrate how they provide a sparse solution, which not only saves energy but also guarantees the network requirements.Comment: 27 pages, 17 figure

    Phase field study of the tip operating state of a freely growing dendrite against convection using a novel parallel multigrid approach

    Get PDF
    Alloy dendrite growth during solidification with coupled thermal-solute-convection fields has been studied by phase field modeling and simulation. The coupled transport equations were solved using a novel parallel-multigrid numerical approach with high computational efficiency that has enabled the investigation of dendrite growth with realistic alloy values of Lewis number ∼104 and Prandtl number ∼10−2. The detailed dendrite tip shape and character were compared with widely recognized analytical approaches to show validity, and shown to be highly dependent on undercooling, solute concentration and Lewis number. In a relatively low flow velocity regime, variations in the ratio of growth selection parameter with and without convection agreed well with theory
    corecore