5,134 research outputs found

    Vertical pairing of identical particles suspended in the plasma sheath

    Full text link
    It is shown experimentally that vertical pairing of two identical microspheres suspended in the sheath of a radio-frequency (rf) discharge at low gas pressures (a few Pa), appears at a well defined instability threshold of the rf power. The transition is reversible, but with significant hysteresis on the second stage. A simple model, which uses measured microsphere resonance frequencies and takes into account besides Coulomb interaction between negatively charged microspheres also their interaction with positive ion wake charges, seems to explain the instability threshold quite well.Comment: 4 pages, 6 figures. to appear in Phys. Rev. Lett. 86, May 14th (2001

    Development of a multiplex flow cytometric microsphere immunoassay for mycotoxins and evaluation of its application in feed

    Get PDF
    A multi-mycotoxin immunoassay—using the MultiAnalyte Profiling (xMAP) technology—is developed and evaluated. This technology combines a unique color-coded microsphere suspension array, with a dedicated flow cytometer. We aimed for the combined detection of aflatoxins, ochratoxin A, deoxynivalenol, fumonisins, zearalenone and T-2-toxin in an inhibition immunoassay format. Sets of six mycotoxin-protein conjugates and six specific monoclonal antibodies were selected, and we observed good sensitivities and no cross-interactions between the assays in buffer. However, detrimental effects of the feed extract on the sensitivities and in some cases on the slopes of the curves were observed and different sample materials showed different effects. Therefore, for quantitative analysis, this assay depends on calibration curves in blank matrix extracts or on the use of a suitable multi-mycotoxin cleanup. To test if the method was suitable for the qualitative detection at EU guidance levels, we fortified rapeseed meal, a feed ingredient, with the six mycotoxins, and all extracts showed inhibited responses in comparison with the non-fortified sample extract. Contaminated FAPAS reference feed samples assigned for a single mycotoxin showed strong inhibitions in the corresponding assays but also often in other assays of the multiplex. In most cases, the presence of these other mycotoxins was confirmed by instrumental analysis. The multiplex immunoassay can be easily extended with other mycotoxins of interest, but finding a suitable multi-mycotoxin cleanup will improve its applicability

    Optimal Sizes of Dielectric Microspheres for Cavity QED with Strong Coupling

    Get PDF
    The whispering gallery modes (WGMs) of quartz microspheres are investigated for the purpose of strong coupling between single photons and atoms in cavity quantum electrodynamics (cavity QED). Within our current understanding of the loss mechanisms of the WGMs, the saturation photon number, n, and critical atom number, N, cannot be minimized simultaneously, so that an "optimal" sphere size is taken to be the radius for which the geometric mean, (n x N)^(1/2), is minimized. While a general treatment is given for the dimensionless parameters used to characterize the atom-cavity system, detailed consideration is given to the D2 transition in atomic Cesium (852nm) using fused-silica microspheres, for which the maximum coupling coefficient g/(2*pi)=750MHz occurs for a sphere radius a=3.63microns corresponding to the minimum for n=6.06x10^(-6). By contrast, the minimum for N=9.00x10^(-6) occurs for a sphere radius of a=8.12microns, while the optimal sphere size for which (n x N)^(1/2) is minimized occurs at a=7.83microns. On an experimental front, we have fabricated fused-silica microspheres with radii a=10microns and consistently observed quality factors Q=0.8x10^(7). These results for the WGMs are compared with corresponding parameters achieved in Fabry-Perot cavities to demonstrate the significant potential of microspheres as a tool for cavity QED with strong coupling.Comment: 12 pages, 14 figure

    Fourier-domain low-coherence interferometry for light-scattering spectroscopy

    Get PDF
    We present a novel method for obtaining depth-resolved spectra for determining scatterer size through elastic- scattering properties. Depth resolution is achieved with a white-light source in a Michelson interferometer with the mixed signal and reference fields dispersed by a spectrograph. The spectrum is Fourier transformed to yield the axial spatial cross correlation between the signal and reference fields with near 1 m m depth resolution. Spectral information is obtained by windowing to yield the scattering amplitude as a function of wave number. The technique is demonstrated by determination of the size of polystyrene microspheres in a subsurface layer with subwavelength accuracy. Application of the technique to probing the size of cell nuclei in living epithelial tissues is discussed

    Aquatic polymers can drive pathogen transmission in coastal ecosystems.

    Get PDF
    Gelatinous polymers including extracellular polymeric substances (EPSs) are fundamental to biophysical processes in aquatic habitats, including mediating aggregation processes and functioning as the matrix of biofilms. Yet insight into the impact of these sticky molecules on the environmental transmission of pathogens in the ocean is limited. We used the zoonotic parasite Toxoplasma gondii as a model to evaluate polymer-mediated mechanisms that promote transmission of terrestrially derived pathogens to marine fauna and humans. We show that transparent exopolymer particles, a particulate form of EPS, enhance T. gondii association with marine aggregates, material consumed by organisms otherwise unable to access micrometre-sized particles. Adhesion to EPS biofilms on macroalgae also captures T. gondii from the water, enabling uptake of pathogens by invertebrates that feed on kelp surfaces. We demonstrate the acquisition, concentration and retention of T. gondii by kelp-grazing snails, which can transmit T. gondii to threatened California sea otters. Results highlight novel mechanisms whereby aquatic polymers facilitate incorporation of pathogens into food webs via association with particle aggregates and biofilms. Identifying the critical role of invisible polymers in transmission of pathogens in the ocean represents a fundamental advance in understanding and mitigating the health impacts of coastal habitat pollution with contaminated runoff

    Spatiotemporal release of VEGF from biodegradable polylactic-co-glycolic acid microspheres induces angiogenesis in chick chorionic allantoic membrane assay

    Get PDF
    The file attached to this record is the author's final peer reviewed version. The Publisher's final version can be found by following the DOI link.While vascular endothelial growth factor (VEGF) is an acknowledged potent pro-angiogenic agent there is a need to deliver it at an appropriate concentration for several days to achieve angiogenesis. The aim of this study was to produce microspheres of biodegradable polylactic-co-glycolic acid (PLGA) tailored to achieve sustained release of VEGF at an appropriate concentration over seven days, avoiding excessive unregulated release of VEGF that has been associated with the formation of leaky blood vessels. Several formulations were examined to produce microspheres loaded with both human serum albumin (HSA) and VEGF to achieve release of VEGF between 3 and 10 ng per ml for seven days to match the therapeutic window desired for angiogenesis. In vitro experiments showed an increase in endothelial cell proliferation in response to microspheres bearing VEGF. Similarly, when microspheres containing VEGF were added to the chorionic membrane of fertilised chicken eggs, there was an increase in the development of blood vessels over seven days in response, which was significant for microspheres bearing VEGF and HSA, but not VEGF alone. There was an increase in both blood vessel density and branching – both signs of proangiogenic activity. Further, there was clearly migration of cells to the VEGF loaded microspheres. In summary, we describe the development of an injectable delivery vehicle to achieve spatiotemporal release of physiologically relevant levels of VEGF for several days and demonstrate the angiogenic response to this. We propose that such a treatment vehicle would be suitable for the treatment of ischemic tissue or wounds
    • …
    corecore