5,603 research outputs found
Improving the thermal performance of single-glazed windows using translucent granular aerogel
Copyright @ 2011 Taylor & FrancisCost-effective materials, products and installation methods are required to improve the energy efficiency of the UK's existing building stock. The aim of this paper is to assess the potential for high-performance translucent granular aerogel insulation to be retrofitted over single glazing to reduce heat loss without blocking out all of the useful natural light. In situ testing of a 10-mm-thick prototype panel, consisting of a clear twin-wall polycarbonate sheet filled with granular aerogel, was carried out and validated with steady-state calculations. Results demonstrate that an 80% reduction in heat loss can be achieved without detrimental reductions in light transmission. Payback calculations accounting for the inevitable thermal bridging from openable solutions such as roller shutters or pop-in secondary glazing suggest that a return on investment between 3.5 and 9.5 years is possible if products are consistently used over the heating season. Granular aerogel is a promising material for improving the thermal performance of existing windows. Future research will seek to map out different ways in which the material can be applied to the existing UK housing stock, identifying which systems offer the greatest potential for widespread CO2 savings over their life cycle.This work is funded by the EPSRC, Brunel University and Buro Happold Ltd
Recommended from our members
High-Performance Integrated Window and Façade Solutions for California
The researchers developed a new generation of high-performance façade systems and supporting design and management tools to support industry in meeting Californiaâs greenhouse gas reduction targets, reduce energy consumption, and enable an adaptable response to minimize real-time demands on the electricity grid. The project resulted in five outcomes: (1) The research team developed an R-5, 1-inch thick, triplepane, insulating glass unit with a novel low-conductance aluminum frame. This technology can help significantly reduce residential cooling and heating loads, particularly during the evening. (2) The team developed a prototype of a windowintegrated local ventilation and energy recovery device that provides clean, dry fresh air through the façade with minimal energy requirements. (3) A daylight-redirecting louver system was prototyped to redirect sunlight 15â40 feet from the window. Simulations estimated that lighting energy use could be reduced by 35â54 percent without glare. (4) A control system incorporating physics-based equations and a mathematical solver was prototyped and field tested to demonstrate feasibility. Simulations estimated that total electricity costs could be reduced by 9-28 percent on sunny summer days through adaptive control of operable shading and daylighting components and the thermostat compared to state-of-the-art automatic façade controls in commercial building perimeter zones. (5) Supporting models and tools needed by industry for technology R&D and market transformation activities were validated. Attaining Californiaâs clean energy goals require making a fundamental shift from todayâs ad-hoc assemblages of static components to turnkey, intelligent, responsive, integrated building façade systems. These systems offered significant reductions in energy use, peak demand, and operating cost in California
Predicted and in situ performance of a solar air collector incorporating a translucent granular aerogel cover
This is the post-print version of the Article. The official published version can be accessed from the link below - Copyright @ 2012 ElsevierThere is an opportunity to improve the efficiency of flat plate solar air collectors by replacing their conventional glass covers with lightweight polycarbonate panels filled with high performance aerogel insulation. The in situ performance of a 5.4m2 solar air collector containing granular aerogel is simulated and tested. The collector is incorporated into the external insulation of a mechanically ventilated end terrace house, recently refurbished in London, UK. During the 7 day test period, peak outlet temperatures up to 45 °C are observed. Resultant supply and internal air temperatures peak at 25â30 and 21â22 °C respectively. Peak efficiencies of 22â36% are calculated based on the proposed design across a range of cover types. Measured outlet temperatures are validated to within 5% of their predicted values. Estimated outputs range from 118 to 166 kWh/m2/year for collectors with different thickness granular aerogel covers, compared to 110 kWh/m2/year for a single glazed collector, 140 k h/m2/year for a double glazed collector and 202 kWh/m2/year for a collector incorporating high performance monolithic aerogel. Payback periods of 9â16 years are calculated across all cover types. An efficiency up to 60% and a payback period as low as 4.5 years is possible with an optimised collector incorporating a 10 mm thick granular aerogel cover.This work is supported by the EPSRC, Brunel University, Buro Happold Ltd. and the Technology Strategy Board
Assessment of construction cost reduction of nearly zero energy dwellings in a life cycle perspective
Concerning Nearly Zero Energy Buildings, it is important to guarantee energy efficiency, thermal comfort and indoor environmental quality, while keeping construction and operational costs low. In this framework, this paper explores the efficacy of applying different scenarios, for reducing construction costs of new nearly zero energy multi-family houses in a life cycle perspective. Conversely to the standard cost-optimal approach, a real Italian case study building was chosen. Alternative and unconventional combinations of solutions for envelope and technical systems were adopted. Calculations were performed in two Italian cities (Rome and Turin). Three types of analysis were developed thermal comfort, energy performance and financial calculation. Results of the thermal analysis show that the installation of active cooling to prevent summer overheating can be avoided by applying low-cost passive strategies. All the proposed low-cost scenarios (4 alternative scenarios in Rome and 5 in Turin)reached the highest grade of energy performance, with a reduction of the non-renewable primary energy consumption up to 46% compared to the base case in Rome and 18% in Turin. From the economic perspective, all the scenarios in the two climate zones allow both reductions in the construction costs, up to 26% in Rome and 15% in Turin, and a Net Present Value after 50 years up to 163 âŹ/m2 in Rome and 158 âŹ/m2 in Turin
Improving energy modeling of large building stock through the development of archetype buildings
12th Conference of International Building Performance Simulation Associatio
Comparative Analysis of Energy Demand and CO2 Emissions on Different Typologies of Residential Buildings in Europe
The building sector accounts for one third of the global energy consumption and it is expected to grow in the next decades. This evidence leads researchers, engineers and architects to develop innovative technologies based on renewable energies and to enhance the thermal performance of building envelopes. In this context, the potential applicability and further energy performance analysis of these technologies when implemented into different building typologies and climate conditions are not easily comparable. Although massive information is available in data sources, the lack of standardized methods for data gathering and the non-public availability makes the comparative analyses more diffcult. These facts limit the benchmarking of different building energy demand parameters such as space heating, cooling, air conditioning, domestic hot water, lighting and electric appliances. Therefore, the first objective of this study consists in providing a review about the common typologies of residential buildings in Europe from the main data sources. This study contains specific details on their architecture, building envelope, floor space and insulation properties. The second objective consists in performing a cross-country comparison in terms of energy demand for the applications with higher energy requirements in the residential building sector (heating and domestic hot water), as well as their related CO2 emissions. The approach of this comparative analysis is based on the residential building typology developed in TABULA/EPISCOPE projects. This comparative study provides a reference scenario in terms of energy demand and CO2 emissions for residential buildings and allows to evaluate the potential implementation of new supply energy technologies in hot, temperate and cold climate regions. From this study it was also concluded that there is a necessity of a free access database which could gather and classify reliable energy data in buildings.This study has received funding from European Unionâs Horizon 2020 research and innovation
programme under grant agreement NÂș723596 (Innova MicroSolar). The work is partially funded by the Spanish
government (RTI2018-093849-B-C31). JuliĂ Coma would like to thank Ministerio de EconomĂa y Competitividad
de España for Grant Juan de la Cierva, FJCI-2016-30345. José Miguel Maldonado would like to thank the Spanish
Government for his research fellowship (BES-2016-076554). This work is partially supported by ICREA under the
ICREA Academia programme
Developing future energy performance standards for UK housing: The St Nicholas Court project â Part 1
This paper (and Part 2, to appear in the next issue) set out the results of a housing field trial designed to evaluate the impact of an enhanced energy performance standard for dwellings. The project was designed to inform the next review of Part L of the Building Regulations for England and Wales, which, following the publication of the UK government's white paper on energy policy, is expected in 2005. The project explores the implications of an enhanced standard in the context of timber frame construction. Although for programming reasons it was necessary to terminate the research project at the end of the design phase, the results suggest that the standard investigated is well within the capacity of the industry but it was clear that the whole supply chain will need to take a positive approach to the development of new solutions. The secret to a smooth and cost optimised transition is for the necessary development work to begin immediately, not when regulation changes. © 2003, MCB UP Limite
Characterization of ageing resistant transparent nanocrystalline yttria-stabilized zirconia implants.
The "Window to the Brain" is a transparent cranial implant under development, based on nanocrystalline yttria-stabilized zirconia (nc-YSZ) transparent ceramic material. Previous work has demonstrated the feasibility of this material to facilitate brain imaging over time, but the long-term stability of the material over decades in the body is unknown. In this study, the low-temperature degradation (LTD) of nc-YSZ of 3, 6, and 8 mol % yttria is compared before and after accelerated ageing treatments following ISO standards for assessing the ageing resistance of zirconia ceramics. After 100âhr of accelerated ageing (equivalent to many decades of ageing in the body), the samples do not show any signs of phase transformation to monoclinic by X-ray diffraction and micro-Raman spectroscopy. Moreover, the mechanical hardness of the samples did not decrease, and changes in optical transmittance from 500 to 1000ânm due to ageing treatments was minimal (below 3% for all samples), and unlikely to be due to phase transformation of surface crystals to monoclinic. These results indicate the nc-YSZ has excellent ageing resistance and can withstand long-term implantation conditions without exhibiting LTD
- âŠ