678,914 research outputs found

    Foundations of Theoretical Approaches in Systems Biology

    Get PDF
    AM-S was funded by the German Ministry of Education and Research (BMBF) projects OpHeLiA (0316197) and HOBBIT (031B0363A). RA funded by Generalitat de Catalunya Consolidated Group SGR133 (2017). JV was funded by the German Ministry of Education and Research (BMBF) projects e:Med-CAPSyS (01ZX1604F and 01ZX1304F) and e:Bio-MelEVIR (031L0073A)

    Synthetic biology: advancing biological frontiers by building synthetic systems

    Get PDF
    Advances in synthetic biology are contributing to diverse research areas, from basic biology to biomanufacturing and disease therapy. We discuss the theoretical foundation, applications, and potential of this emerging field

    The Biosemiotic Approach in Biology : Theoretical Bases and Applied Models

    Get PDF
    Biosemiotics is a growing fi eld that investigates semiotic processes in the living realm in an attempt to combine the fi ndings of the biological sciences and semiotics. Semiotic processes are more or less what biologists have typically referred to as “ signals, ” “ codes, ”and “ information processing ”in biosystems, but these processes are here understood under the more general notion of semiosis, that is, the production, action, and interpretation of signs. Thus, biosemiotics can be seen as biology interpreted as a study of living sign systems — which also means that semiosis or sign process can be seen as the very nature of life itself. In other words, biosemiotics is a field of research investigating semiotic processes (meaning, signification, communication, and habit formation in living systems) and the physicochemical preconditions for sign action and interpretation. (...

    Thought Experiments in Biology

    Get PDF
    Unlike in physics, the category of thought experiment is not very common in biology. At least there are no classic examples that are as important and as well-known as the most famous thought experiments in physics, such as Galileo’s, Maxwell’s or Einstein’s. The reasons for this are far from obvious; maybe it has to do with the fact that modern biology for the most part sees itself as a thoroughly empirical discipline that engages either in real natural history or in experimenting on real organisms rather than fictive ones. While theoretical biology does exist and is recognized as part of biology, its role within biology appears to be more marginal than the role of theoretical physics within physics. It could be that this marginality of theory also affects thought experiments as sources of theoretical knowledge. Of course, none of this provides a sufficient reason for thinking that thought experiments are really unimportant in biology. It is quite possible that the common perception of this matter is wrong and that there are important theoretical considerations in biology, past or present, that deserve the title of thought experiment just as much as the standard examples from physics. Some such considerations may even be widely known and considered to be important, but were not recognized as thought experiments. In fact, as we shall see, there are reasons for thinking that what is arguably the single most important biological work ever, Charles Darwin’s On the Origin of Species, contains a number of thought experiments. There are also more recent examples both in evolutionary and non-evolutionary biology, as we will show. Part of the problem in identifying positive examples in the history of biology is the lack of agreement as to what exactly a thought experiment is. Even worse, there may not be more than a family resemblance that unifies this epistemic category. We take it that classical thought experiments show the following characteristics: They serve directly or indirectly in the non-empirical epistemic evaluation of theoretical propositions, explanations or hypotheses. Thought experiments somehow appeal to the imagination. They involve hypothetical scenarios, which may or may not be fictive. In other words, thought experiments suppose that certain states of affairs hold and then try to intuit what would happen in a world where these suppositions are true. We want to examine in the following sections if there are episodes in the history of biology that satisfy these criteria. As we will show, there are a few episodes that might satisfy all three of these criteria, and many more if the imagination criterion is dropped or understood in a lose sense. In any case, this criterion is somewhat vague in the first place, unless a specific account of the imagination is presupposed. There will also be issues as to what exactly “non-empirical” means. In general, for the sake of discussion we propose to understand the term “thought experiment” here in a broad rather than a narrow sense here. We would rather be guilty of having too wide a conception of thought experiment than of missing a whole range of really interesting examples

    Analytic philosophy for biomedical research: the imperative of applying yesterday's timeless messages to today's impasses

    Get PDF
    The mantra that "the best way to predict the future is to invent it" (attributed to the computer scientist Alan Kay) exemplifies some of the expectations from the technical and innovative sides of biomedical research at present. However, for technical advancements to make real impacts both on patient health and genuine scientific understanding, quite a number of lingering challenges facing the entire spectrum from protein biology all the way to randomized controlled trials should start to be overcome. The proposal in this chapter is that philosophy is essential in this process. By reviewing select examples from the history of science and philosophy, disciplines which were indistinguishable until the mid-nineteenth century, I argue that progress toward the many impasses in biomedicine can be achieved by emphasizing theoretical work (in the true sense of the word 'theory') as a vital foundation for experimental biology. Furthermore, a philosophical biology program that could provide a framework for theoretical investigations is outlined

    The Extended (Evolutionary) Synthesis Debate: Where Science Meets Philosophy

    Get PDF
    Recent debates between proponents of the modern evolutionary synthesis (the standard model in evolutionary biology) and those of a possible extended synthesis are a good example of the fascinating tangle among empirical, theoretical, and conceptual or philosophical matters that is the practice of evolutionary biology. In this essay, we briefly discuss two case studies from this debate, highlighting the relevance of philosophical thinking to evolutionary biologists in the hope of spurring further constructive cross-pollination between the two fields
    • 

    corecore