6,568 research outputs found
On the Problem of Detecting When Two Implicit Plane Algebraic Curves Are Similar
©2019. This manuscript version is made available under the CC-BY 4.0 license http://creativecommons.org/licenses/by/4.0/
This document is the Accepted, version of a Published Work that appeared in final form in International Journal of Algebra and Computation (iJAC). To access the final edited and published work see https://doi.org/10.1142/S0218196719500279We make use of the complex implicit representation in order to provide a deterministic algorithm for checking whether or not two im- plicit algebraic curves are related by a similarity. The algorithm has been implemented in the computer algebra system Maple 2016. The implementation can be freely downloaded from the webpage of one of the authors. Examples and evidence of the good practical performance of the algorithm are given
Detecting Similarity of Rational Plane Curves
A novel and deterministic algorithm is presented to detect whether two given
rational plane curves are related by means of a similarity, which is a central
question in Pattern Recognition. As a by-product it finds all such
similarities, and the particular case of equal curves yields all symmetries. A
complete theoretical description of the method is provided, and the method has
been implemented and tested in the Sage system for curves of moderate degrees.Comment: 22 page
Topology of 2D and 3D Rational Curves
In this paper we present algorithms for computing the topology of planar and
space rational curves defined by a parametrization. The algorithms given here
work directly with the parametrization of the curve, and do not require to
compute or use the implicit equation of the curve (in the case of planar
curves) or of any projection (in the case of space curves). Moreover, these
algorithms have been implemented in Maple; the examples considered and the
timings obtained show good performance skills.Comment: 26 pages, 19 figure
Symmetry Detection of Rational Space Curves from their Curvature and Torsion
We present a novel, deterministic, and efficient method to detect whether a
given rational space curve is symmetric. By using well-known differential
invariants of space curves, namely the curvature and torsion, the method is
significantly faster, simpler, and more general than an earlier method
addressing a similar problem. To support this claim, we present an analysis of
the arithmetic complexity of the algorithm and timings from an implementation
in Sage.Comment: 25 page
Involutions of polynomially parametrized surfaces
We provide an algorithm for detecting the involutions leaving a surface
defined by a polynomial parametrization invariant. As a consequence, the
symmetry axes, symmetry planes and symmetry center of the surface, if any, can
be determined directly from the parametrization, without computing or making
use of the implicit representation. The algorithm is based on the fact, proven
in the paper, that any involution of the surface comes from an involution of
the parameter space (the real plane, in our case); therefore, by determining
the latter, the former can be found. The algorithm has been implemented in the
computer algebra system Maple 17. Evidence of its efficiency for moderate
degrees, examples and a complexity analysis are also given
- …