24 research outputs found

    Iterative algorithms for solutions of nonlinear equations in Banach spaces.

    Get PDF
    Doctoral Degree. University of KwaZulu-Natal, Durban.Abstract available in PDF

    Convergence and fixed point theorems in convex metric spaces : a survey

    Full text link

    COMMON FIXED POINTS OF A THREE-STEP ITERATION WITH ERRORS OF ASYMPTOTICALLY QUASI-NONEXPANSIVE NONSELF-MAPPINGS IN THE INTERMEDIATE SENSE IN BANACH SPACES

    Get PDF
    In this paper, we extend the results of Inprasit and Wattanataweekul [7] to the class of asymptotically quasi-nonexpansive nonself-mappings in the intermediate sense. We prove some strong convergence theorems for asymptotically quasi-nonexpansive nonself-mappings in the intermediate sense using a three-step iterative method for finding a common element of the set of solutions of a generalized mixed equilibrium problem and the set of common fixed points of a finite family of nonexpansive mappings in a real Hilbert space. Our results extends, improves, unifies and generalizes the results of [13], [25] and [27]

    Fixed point results of some nonlinear maps with applications

    Get PDF

    Iterative schemes for approximating common solutions of certain optimization and fixed point problems in Hilbert spaces.

    Get PDF
    Masters Degree. University of KwaZulu-Natal, Durban.In this dissertation, we introduce a shrinking projection method of an inertial type with self-adaptive step size for finding a common element of the set of solutions of Split Gen- eralized Equilibrium Problem (SGEP) and the set of common fixed points of a countable family of nonexpansive multivalued mappings in real Hilbert spaces. The self-adaptive step size incorporated helps to overcome the difficulty of having to compute the operator norm while the inertial term accelerates the rate of convergence of the propose algorithm. Under standard and mild conditions, we prove a strong convergence theorem for the sequence generated by the proposed algorithm and obtain some consequent results. We apply our result to solve Split Mixed Variational Inequality Problem (SMVIP) and Split Minimiza- tion Problem (SMP), and present numerical examples to illustrate the performance of our algorithm in comparison with other existing algorithms. Moreover, we investigate the problem of finding common solutions of Equilibrium Problem (EP), Variational Inclusion Problem (VIP)and Fixed Point Problem (FPP) for an infinite family of strict pseudo- contractive mappings. We propose an iterative scheme which combines inertial technique with viscosity method for approximating common solutions of these problems in Hilbert spaces. Under mild conditions, we prove a strong theorem for the proposed algorithm and apply our results to approximate the solutions of other optimization problems. Finally, we present a numerical example to demonstrate the efficiency of our algorithm in comparison with other existing methods in the literature. Our results improve and complement contemporary results in the literature in this direction

    Approximation methods for solutions of some nonlinear problems in Banach spaces.

    Get PDF
    Doctor of Philosophy in Mathematics. University of KwaZulu-Natal, Durban 2016.Abstract available in PDF file

    A study of optimization problems and fixed point iterations in Banach spaces.

    Get PDF
    Doctoral Degree. University of KwaZulu-Natal, Durban.Abstract available in PDF

    Nonlinear Analysis and Optimization with Applications

    Get PDF
    Nonlinear analysis has wide and significant applications in many areas of mathematics, including functional analysis, variational analysis, nonlinear optimization, convex analysis, nonlinear ordinary and partial differential equations, dynamical system theory, mathematical economics, game theory, signal processing, control theory, data mining, and so forth. Optimization problems have been intensively investigated, and various feasible methods in analyzing convergence of algorithms have been developed over the last half century. In this Special Issue, we will focus on the connection between nonlinear analysis and optimization as well as their applications to integrate basic science into the real world
    corecore