386 research outputs found

    The isotopic composition of solar flare accelerated neon

    Get PDF
    The individual isotopes of neon in energetic solar flare particles have been clearly resolved with arms mass resolution of 0.20 amu. We find ^(20)Ne/^(22)Ne = 7.6 (+2.0, -1.8) and ^(21)Ne/^(22)Ne ≾ 0.11 in the 11-26 MeV per nucleon interval. This isotopic composition is essentially the same as that of meteoritic planetary neon-A and is significantly different from that of the solar wind

    Research relative to the heavy isotope spectrometer telescope experiment

    Get PDF
    The Heavy Isotope Spectrometer Telescope (HIST) was launched during August 1978 on ISEE-3 (ICE). HIST was designed to measure the isotopic composition of solar, galactic, and interplanetary cosmic ray nuclei for the elements from H to Ni (1 less than or equal to Z less than or equal to 28) in the energy range from approximately 5 to approximately 200 MeV/nucleon. The results of these measurements have been used in studies of the composition of solar matter and galactic cosmic ray sources, the study of nucleosynthesis processes, studies of particle acceleration and propagation, and studies of the life-history of cosmic rays in the heliosphere and in the galaxy. On December 1, 1978, after 110 days in orbit, HIST suffered an electronic failure in its readout system. After that point, only one-half of the telemetry bits associated with the pulse heights measured by HIST were transmitted to Earth. As a result, the resolution of HIST was significantly degraded, and it served as an element rather than an isotope spectrometer. Fortunately, HIST was able to measure the isotopic composition of heavy nuclei in the 9/23/78 solar event (the largest solar energetic particle event since 1972) during the brief period that it operated at full resolution. This grant funded the analysis of data from the HIST instrument over the period from 12/1/85 to 11/30/92. In section 2 of this final report, we summarize the scientific accomplishments that have resulted from HIST measurements during this time period. A bibliography of tasks and papers that resulted is attached

    The composition of heavy ions in solar energetic particle events

    Get PDF
    Recent advances in determining the elemental, charge state, and isotopic composition of or approximate to 1 to or approximate to 20 MeV per nucleon ions in solar energetic particle (SEP) events and outline our current understanding of the nature of solar and interplanetary processes which may explain the observations. Average values of relative abundances measured in a large number of SEP events were found to be roughly energy independent in the approx. 1 to approx. 20 MeV per nucleon range, and showed a systematic deviation from photospheric abundances which seems to be organized in terms of the first ionization potential of the ion. Direct measurements of the charge states of SEPs revealed the surprisingly common presence of energetic He(+) along with heavy ion with typically coronal ionization states. High resolution measurements of isotopic abundance ratios in a small number of SEP events showed these to be consistent with the universal composition except for the puzzling overabundance of the SEP(22)Ne/(20)Ne relative to this isotopes ratio in the solar wind. The broad spectrum of observed elemental abundance variations, which in their extreme result in composition anomalies characteristic of (3)He rich, heavy ion rich and carbon poor SEP events, along with direct measurements of the ionization states of SEPs provided essential information on the physical characteristics of, and conditions in the source regions, as well as important constraints to possible models for SEP production

    Research in particles and fields

    Get PDF
    Discussed are the research activities in Cosmic Rays, Gamma Rays, and Astrophysical Plasmas supported under NASA Grant NGR 05-002-160. The report is divided into sections which describe the activities, followed by a bibliography. This research program is directed toward the investigation of the astrophysical aspects of cosmic rays and gamma rays and of the radiation and electromagnetic field environment of the Earth and other planets. These investigations are carried out by means of energetic particle and photon detector systems flown on spacecraft and balloons

    Research in particles and fields

    Get PDF
    The astrophysical aspects of cosmic and gamma rays and the radiation environment of the Earth and other planets investigated by means of energetic particle detector systems flown on spacecraft and balloons are discussed. The theory of particles and fields in space is also addressed with particular emphasis on models of Saturn's magnetic field

    Elemental and isotopic abundances in the solar wind

    Get PDF
    The use of collecting foils and lunar material to assay the isotopic composition of the solar wind is reviewed. Arguments are given to show that lunar surface correlated gases are likely to be most useful in studying the history of the solar wind, though the isotopic abundances are thought to give a good approximation to the solar wind composition. The results of the analysis of Surveyor material are also given. The conditions leading to a significant component of the interstellar gas entering the inner solar system are reviewed and suggestions made for experimental searches for this fraction. A critical discussion is given of the different ways in which the basic solar composition could be modified by fractionation taking place between the sun's surface and points of observation such as on the Moon or in interplanetary space. An extended review is made of the relation of isotopic and elemental composition of the interplanetary gas to the dynamic behavior of the solar corona, especially processes leading to fractionation. Lastly, connection is made between the subject of composition, nucleosynthesis and the convective zone of the sun, and processes leading to modification of initial accretion of certain gases on the Earth and Moon

    Low energy particle composition

    Get PDF
    The energy spectra and composition of the steady or 'quiet-time' particle flux, whose origin is unknown was studied. Particles and photons which are associated with solar flares or active regions on the sun were also studied. Various detection techniques used to measure the composition and energy spectra of low energy particles are discussed. Graphs of elemental abundance and energy spectra are given

    Energetic particle observations of the solar-gamma ray/neutron flare events of 3 Jun 1982 and 21 June 1980 isotopic and chemical composition

    Get PDF
    Studies of the charge composition of two solar gamma ray/neutron-flare events reveal a striking enrichment of iron relative to oxygen with a smaller enrichment of intermediate nuclei. He/O is also enhanced and moderate amounts of He-3 are detected but there is no evidence for H-2 or H-3

    Compositions of energetic particle populations in interplanetary space

    Get PDF
    Observations of helium and heavier particles with energies below about 10 to 20 MeV/nucleon are discussed with emphasis on the composition of solar flare particles, corotating energetic particle streams, and the anomalous cosmic ray component. Future advances expected from results obtained from ISEE -3, Voyager, and the international solar polar spacecraft are reviewed

    Isotope Abundances of Solar Coronal Material Derived from Solar Energetic Particle Measurements

    Get PDF
    Coronal isotopic abundances for the elements He, C, N, 0, Ne, and Mg are derived from previously published measurements of solar energetic particles by first measuring, and then correcting for the charge-to-mass-dependent fractionation due to solar flare acceleration and propagation processes. The resulting coronal composition generally agrees with that of other samples of solar system material, but the previously noted difference between the solar flare and solar wind ^(22)Ne/^(26)Ne ratios remains unresolved
    • …
    corecore