1,043 research outputs found

    Composable architecture for rack scale big data computing

    No full text
    The rapid growth of cloud computing, both in terms of the spectrum and volume of cloud workloads, necessitate re-visiting the traditional rack-mountable servers based datacenter design. Next generation datacenters need to offer enhanced support for: (i) fast changing system configuration requirements due to workload constraints, (ii) timely adoption of emerging hardware technologies, and (iii) maximal sharing of systems and subsystems in order to lower costs. Disaggregated datacenters, constructed as a collection of individual resources such as CPU, memory, disks etc., and composed into workload execution units on demand, are an interesting new trend that can address the above challenges. In this paper, we demonstrated the feasibility of composable systems through building a rack scale composable system prototype using PCIe switch. Through empirical approaches, we develop assessment of the opportunities and challenges for leveraging the composable architecture for rack scale cloud datacenters with a focus on big data and NoSQL workloads. In particular, we compare and contrast the programming models that can be used to access the composable resources, and developed the implications for the network and resource provisioning and management for rack scale architecture

    dReDBox: Materializing a full-stack rack-scale system prototype of a next-generation disaggregated datacenter

    Get PDF
    Current datacenters are based on server machines, whose mainboard and hardware components form the baseline, monolithic building block that the rest of the system software, middleware and application stack are built upon. This leads to the following limitations: (a) resource proportionality of a multi-tray system is bounded by the basic building block (mainboard), (b) resource allocation to processes or virtual machines (VMs) is bounded by the available resources within the boundary of the mainboard, leading to spare resource fragmentation and inefficiencies, and (c) upgrades must be applied to each and every server even when only a specific component needs to be upgraded. The dRedBox project (Disaggregated Recursive Datacentre-in-a-Box) addresses the above limitations, and proposes the next generation, low-power, across form-factor datacenters, departing from the paradigm of the mainboard-as-a-unit and enabling the creation of function-block-as-a-unit. Hardware-level disaggregation and software-defined wiring of resources is supported by a full-fledged Type-1 hypervisor that can execute commodity virtual machines, which communicate over a low-latency and high-throughput software-defined optical network. To evaluate its novel approach, dRedBox will demonstrate application execution in the domains of network functions virtualization, infrastructure analytics, and real-time video surveillance.This work has been supported in part by EU H2020 ICTproject dRedBox, contract #687632.Peer ReviewedPostprint (author's final draft

    Quantifying the latency benefits of near-edge and in-network FPGA acceleration

    Get PDF
    Transmitting data to cloud datacenters in distributed IoT applications introduces significant communication latency, but is often the only feasible solution when source nodes are computationally limited. To address latency concerns, cloudlets, in-network computing, and more capable edge nodes are all being explored as a way of moving processing capability towards the edge of the network. Hardware acceleration using Field Programmable Gate Arrays (FPGAs) is also seeing increased interest due to reduced computation latency and improved efficiency. This paper evaluates the the implications of these offloading approaches using a case study neural network based image classification application, quantifying both the computation and communication latency resulting from different platform choices. We consider communication latency including the ingestion of packets for processing on the target platform, showing that this varies significantly with the choice of platform. We demonstrate that emerging in-network accelerator approaches offer much improved and predictable performance as well as better scaling to support multiple data sources

    OS Scheduling Algorithms for Memory Intensive Workloads in Multi-socket Multi-core servers

    Full text link
    Major chip manufacturers have all introduced multicore microprocessors. Multi-socket systems built from these processors are routinely used for running various server applications. Depending on the application that is run on the system, remote memory accesses can impact overall performance. This paper presents a new operating system (OS) scheduling optimization to reduce the impact of such remote memory accesses. By observing the pattern of local and remote DRAM accesses for every thread in each scheduling quantum and applying different algorithms, we come up with a new schedule of threads for the next quantum. This new schedule potentially cuts down remote DRAM accesses for the next scheduling quantum and improves overall performance. We present three such new algorithms of varying complexity followed by an algorithm which is an adaptation of Hungarian algorithm. We used three different synthetic workloads to evaluate the algorithm. We also performed sensitivity analysis with respect to varying DRAM latency. We show that these algorithms can cut down DRAM access latency by up to 55% depending on the algorithm used. The benefit gained from the algorithms is dependent upon their complexity. In general higher the complexity higher is the benefit. Hungarian algorithm results in an optimal solution. We find that two out of four algorithms provide a good trade-off between performance and complexity for the workloads we studied

    Software Defined Application Delivery Networking

    Get PDF
    In this thesis we present the architecture, design, and prototype implementation details of AppFabric. AppFabric is a next generation application delivery platform for easily creating, managing and controlling massively distributed and very dynamic application deployments that may span multiple datacenters. Over the last few years, the need for more flexibility, finer control, and automatic management of large (and messy) datacenters has stimulated technologies for virtualizing the infrastructure components and placing them under software-based management and control; generically called Software-defined Infrastructure (SDI). However, current applications are not designed to leverage this dynamism and flexibility offered by SDI and they mostly depend on a mix of different techniques including manual configuration, specialized appliances (middleboxes), and (mostly) proprietary middleware solutions together with a team of extremely conscientious and talented system engineers to get their applications deployed and running. AppFabric, 1) automates the whole control and management stack of application deployment and delivery, 2) allows application architects to define logical workflows consisting of application servers, message-level middleboxes, packet-level middleboxes and network services (both, local and wide-area) composed over application-level routing policies, and 3) provides the abstraction of an application cloud that allows the application to dynamically (and automatically) expand and shrink its distributed footprint across multiple geographically distributed datacenters operated by different cloud providers. The architecture consists of a hierarchical control plane system called Lighthouse and a fully distributed data plane design (with no special hardware components such as service orchestrators, load balancers, message brokers, etc.) called OpenADN . The current implementation (under active development) consists of ~10000 lines of python and C code. AppFabric will allow applications to fully leverage the opportunities provided by modern virtualized Software-Defined Infrastructures. It will serve as the platform for deploying massively distributed, and extremely dynamic next generation application use-cases, including: Internet-of-Things/Cyber-Physical Systems: Through support for managing distributed gather-aggregate topologies common to most Internet-of-Things(IoT) and Cyber-Physical Systems(CPS) use-cases. By their very nature, IoT and CPS use cases are massively distributed and have different levels of computation and storage requirements at different locations. Also, they have variable latency requirements for their different distributed sites. Some services, such as device controllers, in an Iot/CPS application workflow may need to gather, process and forward data under near-real time constraints and hence need to be as close to the device as possible. Other services may need more computation to process aggregated data to drive long term business intelligence functions. AppFabric has been designed to provide support for such very dynamic, highly diversified and massively distributed application use-cases. Network Function Virtualization: Through support for heterogeneous workflows, application-aware networking, and network-aware application deployments, AppFabric will enable new partnerships between Application Service Providers (ASPs) and Network Service Providers (NSPs). An application workflow in AppFabric may comprise of application services, packet and message-level middleboxes, and network transport services chained together over an application-level routing substrate. The Application-level routing substrate allows policy-based service chaining where the application may specify policies for routing their application traffic over different services based on application-level content or context. Virtual worlds/multiplayer games: Through support for creating, managing and controlling dynamic and distributed application clouds needed by these applications. AppFabric allows the application to easily specify policies to dynamically grow and shrink the application\u27s footprint over different geographical sites, on-demand. Mobile Apps: Through support for extremely diversified and very dynamic application contexts typical of such applications. Also, AppFabric provides support for automatically managing massively distributed service deployment and controlling application traffic based on application-level policies. This allows mobile applications to provide the best Quality-of-Experience to its users without This thesis is the first to handle and provide a complete solution for such a complex and relevant architectural problem that is expected to touch each of our lives by enabling exciting new application use-cases that are not possible today. Also, AppFabric is a non-proprietary platform that is expected to spawn lots of innovations both in the design of the platform itself and the features it provides to applications. AppFabric still needs many iterations, both in terms of design and implementation maturity. This thesis is not the end of journey for AppFabric but rather just the beginning

    Bankrupt Covert Channel: Turning Network Predictability into Vulnerability

    Get PDF
    Recent years have seen a surge in the number of data leaks despite aggressive information-containment measures deployed by cloud providers. When attackers acquire sensitive data in a secure cloud environment, covert communication channels are a key tool to exfiltrate the data to the outside world. While the bulk of prior work focused on covert channels within a single CPU, they require the spy (transmitter) and the receiver to share the CPU, which might be difficult to achieve in a cloud environment with hundreds or thousands of machines. This work presents Bankrupt, a high-rate highly clandestine channel that enables covert communication between the spy and the receiver running on different nodes in an RDMA network. In Bankrupt, the spy communicates with the receiver by issuing RDMA network packets to a private memory region allocated to it on a different machine (an intermediary). The receiver similarly allocates a separate memory region on the same intermediary, also accessed via RDMA. By steering RDMA packets to a specific set of remote memory addresses, the spy causes deep queuing at one memory bank, which is the finest addressable internal unit of main memory. This exposes a timing channel that the receiver can listen on by issuing probe packets to addresses mapped to the same bank but in its own private memory region. Bankrupt channel delivers 74Kb/s throughput in CloudLab's public cloud while remaining undetectable to the existing monitoring capabilities, such as CPU and NIC performance counters.Comment: Published in WOOT 2020 co-located with USENIX Security 202

    Optimizing datacenter power with memory system levers for guaranteed quality-of-service

    Get PDF
    pre-printCo-location of applications is a proven technique to improve hardware utilization. Recent advances in virtualization have made co-location of independent applications on shared hardware a common scenario in datacenters. Colocation, while maintaining Quality-of-Service (QoS) for each application is a complex problem that is fast gaining relevance for these datacenters. The problem is exacerbated by the need for effective resource utilization at datacenter scales. In this work, we show that the memory system is a primary bottleneck in many workloads and is a more effective focal point when enforcing QoS. We examine four different memory system levers to enforce QoS: two that have been previously proposed, and two novel levers. We compare the effectiveness of each lever in minimizing power and resource needs, while enforcing QoS guarantees. We also evaluate the effectiveness of combining various levers and show that this combined approach can yield power reductions of up to 28%
    corecore