43 research outputs found

    Accurate fundamental parameters of CoRoT asteroseismic targets: the solar-like stars HD 49933, HD 175726, HD 181420 and HD 181906

    Full text link
    The CoRoT satellite has provided high-quality light curves of several solar-like stars. Analysis of the light curves provides oscillation frequencies that make it possible to probe the interior of the stars. However, additional constraints on the fundamental parameters of the stars are important for the theoretical modelling to be successful. We will estimate the fundamental parameters (mass, radius and luminosity) of the first four solar-like targets to be observed in the asteroseismic field. In addition, we will determine their effective temperature, metallicity and detailed abundance pattern. To constrain the stellar mass, radius and age we use the SHOTGUN software which compares the location of the stars in the Hertzsprung-Russell diagram with theoretical evolution models. This method takes into account the uncertainties of the observed parameters including the large separation determined from the solar-like oscillations. We determine the effective temperatures and abundance patterns in the stars from the analysis of high-resolution spectra. We have determined the mass, radius and luminosity of the four CoRoT targets to within 5-10 percent, 2-4 percent and 5-13 percent, respectively. The quality of the stellar spectra determines how well we can constrain the effective temperature. For the two best spectra we get 1-sigma uncertainties below 60 K and for the other two 100-150 K. The uncertainty on the surface gravity is less than 0.08 dex for three stars while for HD 181906 it is 0.15 dex. The reason for the larger uncertainty is that the spectrum has two components with a luminosity ratio of Lp/Ls = 0.50+-0.15. While Hipparcos astrometric data strongly suggest it is a binary star we find evidence that the fainter star may be a background star, since it is less luminous but hotter.Comment: 10 pages, accepted by A&

    Scaled oscillation frequencies and echelle diagrams as a tool for comparative asteroseismology

    Full text link
    We describe a method for comparing the frequency spectra of oscillating stars. We focus on solar-like oscillations, in which mode frequencies generally follow a regular pattern. On the basis that oscillation frequencies of similar stars scale homologously, we show how to display two stars on a single echelle diagram. The result can be used to infer the ratio of their mean densities very precisely, without reference to theoretical models. In addition, data from the star with the better signal-to-noise ratio can be used to confirm weaker modes and reject sidelobes in data from the second star. Finally, we show that scaled echelle diagrams provide a solution to the problem of ridge identification in F-type stars, such as those observed by the CoRoT space mission.Comment: accepted for publication in Communications in Asteroseismolog

    Solar-like oscillations with low amplitude in the CoRoT target HD 181906

    Full text link
    Context: The F8 star HD 181906 (effective temperature ~6300K) was observed for 156 days by the CoRoT satellite during the first long run in the centre direction. Analysis of the data reveals a spectrum of solar-like acoustic oscillations. However, the faintness of the target (m_v=7.65) means the signal-to-noise (S/N) in the acoustic modes is quite low, and this low S/N leads to complications in the analysis. Aims: To extract global variables of the star as well as key parameters of the p modes observed in the power spectrum of the lightcurve. Methods: The power spectrum of the lightcurve, a wavelet transform and spot fitting have been used to obtain the average rotation rate of the star and its inclination angle. Then, the autocorrelation of the power spectrum and the power spectrum of the power spectrum were used to properly determine the large separation. Finally, estimations of the mode parameters have been done by maximizing the likelihood of a global fit, where several modes were fit simultaneously. Results: We have been able to infer the mean surface rotation rate of the star (~4 microHz) with indications of the presence of surface differential rotation, the large separation of the p modes (~87 microHz), and therefore also the ridges corresponding to overtones of the acoustic modes.Comment: Paper Accepted to be published in A&A. 10 Pages, 12 figure

    The diameter of the CoRoT target HD 49933. Combining the 3D limb darkening, asteroseismology, and interferometry

    Full text link
    Context. The interpretation of stellar pulsations in terms of internal structure depends on the knowledge of the fundamental stellar parameters. Long-base interferometers permit us to determine very accurate stellar radii, which are independent constraints for stellar models that help us to locate the star in the HR diagram. Aims: Using a direct interferometric determination of the angular diameter and advanced three-dimensional (3D) modeling, we derive the radius of the CoRoT target HD 49933 and reduce the global stellar parameter space compatible with seismic data. Methods: The VEGA/CHARA spectro-interferometer is used to measure the angular diameter of the star. A 3D radiative hydrodynamical simulation of the surface is performed to compute the limb darkening and derive a reliable diameter from visibility curves. The other fundamental stellar parameters (mass, age, and Teff) are found by fitting the large and small p-mode frequency separations using a stellar evolution model that includes microscopic diffusion. Results: We obtain a limb-darkened angular diameter of {\theta}LD = 0.445 \pm 0.012 mas. With the Hipparcos parallax, we obtain a radius of R = 1.42 \pm 0.04 Rsun. The corresponding stellar evolution model that fits both large and small frequency separations has a mass of 1.20 \pm 0.08 Msun and an age of 2.7 Gy. The atmospheric parameters are Teff = 6640 \pm 100 K, log g = 4.21 \pm 0.14, and [Fe/H] = -0.38.Comment: 4 pages, 4 figure

    On detecting the large separation in the autocorrelation of stellar oscillation times series

    Full text link
    The observations carried out by the space missions CoRoT and Kepler provide a large set of asteroseismic data. Their analysis requires an efficient procedure first to determine if the star is reliably showing solar-like oscillations, second to measure the so-called large separation, third to estimate the asteroseismic information that can be retrieved from the Fourier spectrum. We develop in this paper a procedure, based on the autocorrelation of the seismic Fourier spectrum. We have searched for criteria able to predict the output that one can expect from the analysis by autocorrelation of a seismic time series. First, the autocorrelation is properly scaled for taking into account the contribution of white noise. Then, we use the null hypothesis H0 test to assess the reliability of the autocorrelation analysis. Calculations based on solar and CoRoT times series are performed in order to quantify the performance as a function of the amplitude of the autocorrelation signal. We propose an automated determination of the large separation, whose reliability is quantified by the H0 test. We apply this method to analyze a large set of red giants observed by CoRoT. We estimate the expected performance for photometric time series of the Kepler mission. Finally, we demonstrate that the method makes it possible to distinguish l=0 from l=1 modes. The envelope autocorrelation function has proven to be very powerful for the determination of the large separation in noisy asteroseismic data, since it enables us to quantify the precision of the performance of different measurements: mean large separation, variation of the large separation with frequency, small separation and degree identification.Comment: A&A, in pres

    CoRoT and Kepler results: Solar-like oscillators

    Full text link
    The space-borne observatories CoRoT (Convection Rotation and planetary Transits) and Kepler have provided photometric time series data of unprecedented precision for large numbers of stars. These data have revolutionized the fields of transiting exoplanets and asteroseismology. In this review some important asteroseismic results obtained using data from the CoRoT and Kepler space missions concerning stars that show solar-like oscillations are discussed. These results comprise, among others, measurements of the location of the base of the convection zone and helium second-ionization zone in main-sequence stars, the presence (or not) of core-helium burning in red-giant stars, as well as differential rotation in these stars.Comment: Invited review for Advances in Space Researc

    Gaia FGK Benchmark Stars: Effective temperatures and surface gravities

    Full text link
    Large Galactic stellar surveys and new generations of stellar atmosphere models and spectral line formation computations need to be subjected to careful calibration and validation and to benchmark tests. We focus on cool stars and aim at establishing a sample of 34 Gaia FGK Benchmark Stars with a range of different metallicities. The goal was to determine the effective temperature and the surface gravity independently from spectroscopy and atmospheric models as far as possible. Fundamental determinations of Teff and logg were obtained in a systematic way from a compilation of angular diameter measurements and bolometric fluxes, and from a homogeneous mass determination based on stellar evolution models. The derived parameters were compared to recent spectroscopic and photometric determinations and to gravity estimates based on seismic data. Most of the adopted diameter measurements have formal uncertainties around 1%, which translate into uncertainties in effective temperature of 0.5%. The measurements of bolometric flux seem to be accurate to 5% or better, which contributes about 1% or less to the uncertainties in effective temperature. The comparisons of parameter determinations with the literature show in general good agreements with a few exceptions, most notably for the coolest stars and for metal-poor stars. The sample consists of 29 FGK-type stars and 5 M giants. Among the FGK stars, 21 have reliable parameters suitable for testing, validation, or calibration purposes. For four stars, future adjustments of the fundamental Teff are required, and for five stars the logg determination needs to be improved. Future extensions of the sample of Gaia FGK Benchmark Stars are required to fill gaps in parameter space, and we include a list of suggested candidates.Comment: Accepted by A&A; 34 pages (printer format), 14 tables, 13 figures; language correcte

    HD 203608, a quiet asteroseismic target in the old galactic disk

    Full text link
    A short observing run with the spectrometer Harps at the ESO 3.6-m telescope was conducted in order to continue exploring the asteroseismic properties of F type stars. In fact, Doppler observations of F type on the main sequence are demanding and remain currently limited to a single case (HD 49933). Comparison with photometric results obtained with the CoRoT mission on similar stars will be possible with an enhanced set of observations. We selected the 4th magnitude F8V star HD 203608, in order to investigate the oscillating properties of a low-metallicity star of the old galactic disk. A 5-night asteroseismic observation program has been conducted in August 2006 with Harps. Spectra were reduced with the on-line data reduction software provided by the instrument. A new statistical approach has been developed for extracting the significant peaks in the Fourier domain. The oscillation spectrum shows a significant excess power in the frequency range [1.5, 3.0 mHz]. It exhibits a large spacing about 120.4 μ\muHz at 2.5 mHz. Variations of the large spacing with frequency are clearly identified, which require an adapted asymptotic development. The modes identification is based on the unambiguous signature of 15 modes with ℓ=0\ell = 0 and 1. This observation shows the potential diagnostic of asteroseismic constraints. Including them in the stellar modeling enhances significantly the precision on the physical parameters of \cible, resulting in a much more precise position in the HR diagram. The age of the star is now determined in the range 7.25±0.077.25\pm0.07 Gyr.Comment: 9 pages, submitted to A&

    The CoRoT target HD175726: an active star with weak solar-like oscillations

    Full text link
    Context. The CoRoT short runs give us the opportunity to observe a large variety of late-type stars through their solar-like oscillations. We report observations of the star HD175726 that lasted for 27 days during the first short run of the mission. The time series reveals a high-activity signal and the power spectrum presents an excess due to solar-like oscillations with a low signal-to-noise ratio. Aims. Our aim is to identify the most efficient tools to extract as much information as possible from the power density spectrum. Methods. The most productive method appears to be the autocorrelation of the time series, calculated as the spectrum of the filtered spectrum. This method is efficient, very rapid computationally, and will be useful for the analysis of other targets, observed with CoRoT or with forthcoming missions such as Kepler and Plato. Results. The mean large separation has been measured to be 97.2+-0.5 microHz, slightly below the expected value determined from solar scaling laws.We also show strong evidence for variation of the large separation with frequency. The bolometric mode amplitude is only 1.7+-0.25 ppm for radial modes, which is 1.7 times less than expected. Due to the low signal-to-noise ratio, mode identification is not possible for the available data set of HD175726. Conclusions. This study shows the possibility of extracting a seismic signal despite a signal-to-noise ratio of only 0.37. The observation of such a target shows the efficiency of the CoRoT data, and the potential benefit of longer observing runs.Comment: 8 pages. Accepted in A&
    corecore