23,458 research outputs found
Analysis of UK and European NOx and VOC emission scenarios in the Defra model intercomparison exercise
This is a PDF file of an unedited manuscript that has been accepted for publication. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertainSimple emission scenarios have been implemented in eight United Kingdom air quality models with the aim of assessing how these models compared when addressing whether photochemical ozone formation in southern England was NOx- or VOC-sensitive and whether ozone precursor sources in the UK or in the Rest of Europe (RoE) were the most important during July 2006. The suite of models included three Eulerian-grid models (three implementations of one of these models), a Lagrangian atmospheric dispersion model and two moving box air parcel models. The assignments as to NOx- or VOC-sensitive and to UK- versus RoE-dominant, turned out to be highly variable and often contradictory between the individual models. However, when the assignments were filtered by model performance on each day, many of the contradictions could be eliminated. Nevertheless, no one model was found to be the 'best' model on all days, indicating that no single air quality model could currently be relied upon to inform policymakers robustly in terms of NOx- versus VOC-sensitivity and UK- versus RoE-dominance on each day. It is important to maintain a diversity in model approaches.Peer reviewe
The mixing time of the switch Markov chains: a unified approach
Since 1997 a considerable effort has been spent to study the mixing time of
switch Markov chains on the realizations of graphic degree sequences of simple
graphs. Several results were proved on rapidly mixing Markov chains on
unconstrained, bipartite, and directed sequences, using different mechanisms.
The aim of this paper is to unify these approaches. We will illustrate the
strength of the unified method by showing that on any -stable family of
unconstrained/bipartite/directed degree sequences the switch Markov chain is
rapidly mixing. This is a common generalization of every known result that
shows the rapid mixing nature of the switch Markov chain on a region of degree
sequences. Two applications of this general result will be presented. One is an
almost uniform sampler for power-law degree sequences with exponent
. The other one shows that the switch Markov chain on the
degree sequence of an Erd\H{o}s-R\'enyi random graph is asymptotically
almost surely rapidly mixing if is bounded away from 0 and 1 by at least
.Comment: Clarification
A survey of spectral models of gravity coupled to matter
This is a survey of the historical development of the Spectral Standard Model
and beyond, starting with the ground breaking paper of Alain Connes in 1988
where he observed that there is a link between Higgs fields and finite
noncommutative spaces. We present the important contributions that helped in
the search and identification of the noncommutative space that characterizes
the fine structure of space-time. The nature and properties of the
noncommutative space are arrived at by independent routes and show the
uniqueness of the Spectral Standard Model at low energies and the Pati-Salam
unification model at high energies.Comment: An appendix is added to include scalar potential analysis for a
Pati-Salam model. 58 Page
The Topology ToolKit
This system paper presents the Topology ToolKit (TTK), a software platform
designed for topological data analysis in scientific visualization. TTK
provides a unified, generic, efficient, and robust implementation of key
algorithms for the topological analysis of scalar data, including: critical
points, integral lines, persistence diagrams, persistence curves, merge trees,
contour trees, Morse-Smale complexes, fiber surfaces, continuous scatterplots,
Jacobi sets, Reeb spaces, and more. TTK is easily accessible to end users due
to a tight integration with ParaView. It is also easily accessible to
developers through a variety of bindings (Python, VTK/C++) for fast prototyping
or through direct, dependence-free, C++, to ease integration into pre-existing
complex systems. While developing TTK, we faced several algorithmic and
software engineering challenges, which we document in this paper. In
particular, we present an algorithm for the construction of a discrete gradient
that complies to the critical points extracted in the piecewise-linear setting.
This algorithm guarantees a combinatorial consistency across the topological
abstractions supported by TTK, and importantly, a unified implementation of
topological data simplification for multi-scale exploration and analysis. We
also present a cached triangulation data structure, that supports time
efficient and generic traversals, which self-adjusts its memory usage on demand
for input simplicial meshes and which implicitly emulates a triangulation for
regular grids with no memory overhead. Finally, we describe an original
software architecture, which guarantees memory efficient and direct accesses to
TTK features, while still allowing for researchers powerful and easy bindings
and extensions. TTK is open source (BSD license) and its code, online
documentation and video tutorials are available on TTK's website
Community detection for networks with unipartite and bipartite structure
Finding community structures in networks is important in network science,
technology, and applications. To date, most algorithms that aim to find
community structures only focus either on unipartite or bipartite networks. A
unipartite network consists of one set of nodes and a bipartite network
consists of two nonoverlapping sets of nodes with only links joining the nodes
in different sets. However, a third type of network exists, defined here as the
mixture network. Just like a bipartite network, a mixture network also consists
of two sets of nodes, but some nodes may simultaneously belong to two sets,
which breaks the nonoverlapping restriction of a bipartite network. The mixture
network can be considered as a general case, with unipartite and bipartite
networks viewed as its limiting cases. A mixture network can represent not only
all the unipartite and bipartite networks, but also a wide range of real-world
networks that cannot be properly represented as either unipartite or bipartite
networks in fields such as biology and social science. Based on this
observation, we first propose a probabilistic model that can find modules in
unipartite, bipartite, and mixture networks in a unified framework based on the
link community model for a unipartite undirected network [B Ball et al (2011
Phys. Rev. E 84 036103)]. We test our algorithm on synthetic networks (both
overlapping and nonoverlapping communities) and apply it to two real-world
networks: a southern women bipartite network and a human transcriptional
regulatory mixture network. The results suggest that our model performs well
for all three types of networks, is competitive with other algorithms for
unipartite or bipartite networks, and is applicable to real-world networks.Comment: 27 pages, 8 figures.
(http://iopscience.iop.org/1367-2630/16/9/093001
SEAN: Image Synthesis with Semantic Region-Adaptive Normalization
We propose semantic region-adaptive normalization (SEAN), a simple but
effective building block for Generative Adversarial Networks conditioned on
segmentation masks that describe the semantic regions in the desired output
image. Using SEAN normalization, we can build a network architecture that can
control the style of each semantic region individually, e.g., we can specify
one style reference image per region. SEAN is better suited to encode,
transfer, and synthesize style than the best previous method in terms of
reconstruction quality, variability, and visual quality. We evaluate SEAN on
multiple datasets and report better quantitative metrics (e.g. FID, PSNR) than
the current state of the art. SEAN also pushes the frontier of interactive
image editing. We can interactively edit images by changing segmentation masks
or the style for any given region. We can also interpolate styles from two
reference images per region.Comment: Accepted as a CVPR 2020 oral paper. The interactive demo is available
at https://youtu.be/0Vbj9xFgoU
- …