71,506 research outputs found
The antibacterial effect of non-thermal atmospheric pressure plasma treatment of titanium surfaces according to the bacterial wall structure
Titanium is commonly used as a biomaterial for dental implants. In this study, we investigated the antibacterial properties of titanium samples following treatment with a non-thermal atmospheric pressure plasma jet (NTAPPJ) on bacteria with two different cell wall structures, including gram-positive and gram-negative bacteria. The hydrophilicity and surface energy of titanium surfaces were significantly increased after NTAPPJ treatment without altering topographical features. Changes in the chemical composition and reductive potential were observed on the NTAPPJ-treated titanium surfaces. The adhesion and biofilm formation rate of bacteria were significantly reduced on the NTAPPJ-treated titanium surfaces compared with the untreated samples, which was confirmed by fluorescent imaging. Regarding the comparison between gram-positive and gram-negative bacteria, both adhesion and the biofilm formation rate were significantly lower for gram-negative bacteria than gram-positive bacteria on samples treated for longer durations with the NTAPPJ. Transmission electron microscopy imaging showed a comparably more disruptive membrane structure of gram-negative bacteria than gram-positive bacteria on the NTAPPJ-treated surfaces. Our results indicated that the NTAPPJ treatment could be useful for preventing bacterial adhesion and biofilm formation on titanium dental implant surfaces, while the reductive potential on surfaces treated by the NTAPPJ could cause oxidation of bacteria, which could be more sensitive to gram-negative bacteria due to differences in the cell wall structure.ope
Lipoteichoic Acid in Streptomyces hygroscopicus: Structural Model and Immunomodulatory Activities
Gram positive bacteria produce cell envelope macroamphiphile glycopolymers, i.e. lipoteichoic acids or lipoglycans, whose functions and biosynthesis are not yet fully understood. We report for the first time a detailed structure of lipoteichoic acid isolated from a Streptomyces species, i.e. Streptomyces hygroscopicus subsp. hygroscopicus NRRL 2387T. Chemical, MS and NMR analyses revealed a polyglycerolphosphate backbone substituted with α-glucosaminyl and α-N-acetyl-glucosaminyl residues but devoid of any amino-acid substituent. This structure is very close, if not identical, to that of the wall teichoic acid of this organism. These data not only contribute to the growing recognition that lipoteichoic acid is a cell envelope component of Gram positive Actinobacteria but also strongly support the recently proposed hypothesis of an overlap between the pathways of lipoteichoic acid and wall teichoic acid synthesis in these bacteria. S. hygroscopicus lipoteichoic acid induced signalling by human innate immune receptor TLR2, confirming its role as a microbe-associated molecular pattern. Its activity was partially dependant on TLR1, TLR6 and CD14. Moreover, it stimulated TNF-α and IL-6 production by a human macrophage cell line to an extent similar to that of Staphylococcus aureus lipoteichoic acid. These results provide new clues on lipoteichoic acid structure/function relationships, most particularly on the role of the polyglycerolphosphate backbone substituents
Synthetic Teichoic Acid Conjugate Vaccine against Nosocomial Gram-Positive Bacteria
Lipoteichoic acids (LTA) are amphiphilic polymers that are important constituents of the cell wall of many Gram-positive bacteria. The chemical structures of LTA vary among organisms, albeit in the majority of Gram-positive bacteria the LTAs feature a common poly-1,3-(glycerolphosphate) backbone. Previously, the specificity of opsonic antibodies for this backbone present in some Gram-positive bacteria has been demonstrated, suggesting that this minimal structure may be sufficient for vaccine development. In the present work, we studied a well-defined synthetic LTA-fragment, which is able to inhibit opsonic killing of polyclonal rabbit sera raised against native LTA from Enterococcus faecalis 12030. This promising compound was conjugated with BSA and used to raise rabbit polyclonal antibodies. Subsequently, the opsonic activity of this serum was tested in an opsonophagocytic assay and specificity was confirmed by an opsonophagocytic inhibition assay. The conjugated LTA-fragment was able to induce specific opsonic antibodies that mediate killing of the clinical strains E. faecalis 12030, Enterococcus faecium E1162, and community-acquired Staphylococcus aureus strain MW2 (USA400). Prophylactic immunization with the teichoic acid conjugate and with the rabbit serum raised against this compound was evaluated in active and passive immunization studies in mice, and in an enterococcal endocarditis rat model. In all animal models, a statistically significant reduction of colony counts was observed indicating that the novel synthetic LTA-fragment conjugate is a promising vaccine candidate for active or passive immunotherapy against E. faecalis and other Gram-positive bacteria
Synthetic Teichoic Acid Conjugate Vaccine against Nosocomial Gram-Positive Bacteria
Lipoteichoic acids (LTA) are amphiphilic polymers that are important constituents of the cell wall of many Gram-positive bacteria. The chemical structures of LTA vary among organisms, albeit in the majority of Gram-positive bacteria the LTAs feature a common poly-1,3-(glycerolphosphate) backbone. Previously, the specificity of opsonic antibodies for this backbone present in some Gram-positive bacteria has been demonstrated, suggesting that this minimal structure may be sufficient for vaccine development. In the present work, we studied a well-defined synthetic LTA-fragment, which is able to inhibit opsonic killing of polyclonal rabbit sera raised against native LTA from Enterococcus faecalis 12030. This promising compound was conjugated with BSA and used to raise rabbit polyclonal antibodies. Subsequently, the opsonic activity of this serum was tested in an opsonophagocytic assay and specificity was confirmed by an opsonophagocytic inhibition assay. The conjugated LTA-fragment was able to induce specific opsonic antibodies that mediate killing of the clinical strains E. faecalis 12030, Enterococcus faecium E1162, and community-acquired Staphylococcus aureus strain MW2 (USA400). Prophylactic immunization with the teichoic acid conjugate and with the rabbit serum raised against this compound was evaluated in active and passive immunization studies in mice, and in an enterococcal endocarditis rat model. In all animal models, a statistically significant reduction of colony counts was observed indicating that the novel synthetic LTA-fragment conjugate is a promising vaccine candidate for active or passive immunotherapy against E. faecalis and other Gram-positive bacteria
Assessment of Photoactivated Chlorophyllin Production of Singlet Oxygen and Inactivation of Foodborne Pathogens
Singlet oxygen (1O2) is known to have antibacterial activity; however, production can involve complex processes with expensive chemical precursors and/or significant energy input. Recent studies have confirmed the generation of 1O2 through the activation of photosensitizer molecules (PSs) with visible light in the presence of oxygen. Given the increase in the incidence of foodborne diseases associated with cross-contamination in food-processing industries, which is becoming a major concern, food-safe additives, such as chlorophyllins, have been studied for their ability to act as PSs. The fluorescent probe Singlet Oxygen Sensor Green (SOSG®) was used to estimate 1O2 formation upon the irradiation of traditional PSs (rose bengal (RB), chlorin 6 (ce6)) and novel chlorophyllins, sodium magnesium (NaChl) and sodium copper (NaCuChl), with both simulated-solar and visible light. NaChl gave rise to a similar 1O2 production rate when compared to RB and ce6. Basic mixing was shown to introduce sufficient oxygen to the PS solutions, preventing the limitation of the 1O2 production rate. The NaChl-based inactivation of Gram-positive S. aureus and Gram-negative E. coli was demonstrated with a 5-log reduction with UV–Vis light. The NaChl-based inactivation of Gram-positive S. aureus was accomplished with a 2-log reduction after 105 min of visible-light irradiation and a 3-log reduction following 150 min of exposure from an initial viable bacterial concentration of 106 CFU mL−1. CHS-NaChl-based photosensitization under visible light enhanced Gram-negative E. coli inactivation and provided a strong bacteriostatic effect preventing E. coli proliferation. The difference in the ability of NaChl and CHS-NaChl complexes to inactivate Gram-positive and Gram-negative bacteria was confirmed to result from the cell wall structure, which impacted PS–bacteria attachment and therefore the production of localized singlet oxygen
Selective detection of bacterial layers with terahertz plasmonic antennas
Current detection and identification of micro-organisms is based on either
rather unspecific rapid microscopy or on more accurate complex, time-consuming
procedures. In a medical context, the determination of the bacteria Gram type
is of significant interest. The diagnostic of microbial infection often
requires the identification of the microbiological agent responsible for the
infection, or at least the identification of its family (Gram type), in a
matter of minutes. In this work, we propose to use terahertz frequency range
antennas for the enhanced selective detection of bacteria types. Several
microorganisms are investigated by terahertz time-domain spectroscopy: a fast,
contactless and damage-free investigation method to gain information on the
presence and the nature of the microorganisms. We demonstrate that plasmonic
antennas enhance the detection sensitivity for bacterial layers and allow the
selective recognition of the Gram type of the bacteria
Ultrasound-Mediated DNA Transformation in Thermophilic Gram-Positive Anaerobes
Thermophilic, Gram-positive, anaerobic bacteria (TGPAs) are generally recalcitrant to chemical and electrotransformation due to their special cell-wall structure and the low intrinsic permeability of plasma membranes. transformants/µg of methylated DNA. Delivery into X514 cells was confirmed via detecting the kanamycin-resistance gene for pIKM2, while confirmation of pHL015 was detected by visualization of fluorescence signals of secondary host-cells following a plasmid-rescue experiment. Furthermore, the foreign β-1,4-glucanase gene was functionally expressed in X514, converting the host into a prototypic thermophilic consolidated bioprocessing organism that is not only ethanologenic but cellulolytic.In this study, we developed an ultrasound-based sonoporation method in TGPAs. This new DNA-delivery method could significantly improve the throughput in developing genetic systems for TGPAs, many of which are of industrial interest yet remain difficult to manipulate genetically
Role of the cell-wall structure in the retention of bacteria by microfiltration membranes
This experimental study investigates the retention of bacteria by porous membranes. The transfer of bacteria larger than the nominal pore size of microfiltration track-etched membranes has been studied for several kinds of bacterial strains. This unexpected transfer does not correlate to the hydrophobicity,neither to the surface charge of the microorganism, as suggested in previous reports. We conclude that,in our conditions, the kind of bacteria (Gram-positive or Gram-negative) is finally the most important parameter. As the distinction between those two types of bacteria is related to the cell-wall structure, we provide an experimental evidence, via the action of an antibiotic, that the cell-wall flexibility triggers the transfer of the bacteria through artificial membranes, when the pores are smaller in size than the cell
Synthesis of Diaminopimelic Acid Containing Peptidoglycan Fragments and Tracheal Cytotoxin (TCT) and Investigation of Their Biological Functions
Bacterial cell wall peptidoglycan (PGN) is a potent immunostimulator and immune adjuvant. The PGN of Gram-negative bacteria and some Gram-positive bacteria contain meso -diaminopimelic acid ( meso -DAP), and we have recently shown that the intracellular protein Nod1 is a PGN receptor and recognizes DAP-containing peptides. In this study, we achieved the synthesis of DAP-containing PGN fragments, including the first chemical synthesis of tracheal cytotoxin (TCT), GlcNAc-(Β1–4)-(anhydro)MurNAc- L -Ala-Γ- D -Glu- meso -DAP- D -Ala, and a repeating-unit of DAP-type PGN, GlcNAc-(Β1–4)-MurNAc- L -Ala-Γ- D -Glu- meso -DAP- D -Ala. For the synthesis of PGN fragments, we first established a new synthetic method for an orthogonally protected meso -DAP derivative, and then we constructed the glycopeptide structures. The ability of these fragments to stimulate human Nod1, as well as differences in Nod1 recognition of the variety of synthesized ligand structures were examined. The results showed that the substitution of the N terminus of iE-DAP is necessary for stronger Nod1 recognition, but the structure of the substituent seems not to be strictly recognized. The importance of the carboxyl group at the 2-position of DAP for human Nod1 stimulation was also shown.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/61332/1/10318_ftp.pd
- …