1,570 research outputs found
First Fruits of the Spitzer Space Telescope: Galactic and Solar System Studies
This article provides a brief overview of the Spitzer Space Telescope and
discusses its initial scientific results on galactic and solar system science.Comment: Review article to appear in slightly different format in Vol.44 of
Annual Reviews of Astronomy and Astrophysics, 200
A perspective from extinct radionuclides on a Young Stellar Object: The Sun and its accretion disk
Meteorites, which are remnants of solar system formation, provide a direct
glimpse into the dynamics and evolution of a young stellar object (YSO), namely
our Sun. Much of our knowledge about the astrophysical context of the birth of
the Sun, the chronology of planetary growth from micrometer-sized dust to
terrestrial planets, and the activity of the young Sun comes from the study of
extinct radionuclides such as 26Al (t1/2 = 0.717 Myr). Here we review how the
signatures of extinct radionuclides (short-lived isotopes that were present
when the solar system formed and that have now decayed below detection level)
in planetary materials influence the current paradigm of solar system
formation. Particular attention is given to tying meteorite measurements to
remote astronomical observations of YSOs and modeling efforts. Some extinct
radionuclides were inherited from the long-term chemical evolution of the
Galaxy, others were injected into the solar system by a nearby supernova, and
some were produced by particle irradiation from the T-Tauri Sun. The chronology
inferred from extinct radionuclides reveals that dust agglomeration to form
centimeter-sized particles in the inner part of the disk was very rapid (<50
kyr), planetesimal formation started early and spanned several million years,
planetary embryos (possibly like Mars) were formed in a few million years, and
terrestrial planets (like Earth) completed their growths several tens of
million years after the birth of the Sun.Comment: 49 pages, 9 figures, 1 table. Uncorrected preprin
Infrared Universe Poster
This educational poster contains images and information about what the universe looks like in the infrared. The back contains nine 8.5 in. x 11 in. panels that explain what infrared light is and why infrared astronomy is important. It also talks about light and the different colors and wavelengths of the electromagnetic spectrum. It explains atmospheric transmission and how infrared observations help in the search for planets. The back panels also contain details on the Herschel experiment. In a very simple way it teaches the students how Herschel discovered infrared light. Educational levels: Middle school, High school
Astrobiology: An Astronomer's Perspective
In this review we explore aspects of the field of astrobiology from an
astronomical viewpoint. We therefore focus on the origin of life in the context
of planetary formation, with additional emphasis on tracing the most abundant
volatile elements, C, H, O, and N that are used by life on Earth. We first
explore the history of life on our planet and outline the current state of our
knowledge regarding the delivery of the C, H, O, N elements to the Earth. We
then discuss how astronomers track the gaseous and solid molecular carriers of
these volatiles throughout the process of star and planet formation. It is now
clear that the early stages of star formation fosters the creation of water and
simple organic molecules with enrichments of heavy isotopes. These molecules
are found as ice coatings on the solid materials that represent microscopic
beginnings of terrestrial worlds. Based on the meteoritic and cometary record,
the process of planet formation, and the local environment, lead to additional
increases in organic complexity. The astronomical connections towards this
stage are only now being directly made. Although the exact details are
uncertain, it is likely that the birth process of star and planets likely leads
to terrestrial worlds being born with abundant water and organics on the
surface.Comment: 40 pages, 11 figures to be published in: XVII Special Courses at the
National Observatory of Rio de Janeiro. AIP Conference Proceedings, Volume
TB
Circumstellar disks and planets. Science cases for next-generation optical/infrared long-baseline interferometers
We present a review of the interplay between the evolution of circumstellar
disks and the formation of planets, both from the perspective of theoretical
models and dedicated observations. Based on this, we identify and discuss
fundamental questions concerning the formation and evolution of circumstellar
disks and planets which can be addressed in the near future with optical and
infrared long-baseline interferometers. Furthermore, the importance of
complementary observations with long-baseline (sub)millimeter interferometers
and high-sensitivity infrared observatories is outlined.Comment: 83 pages; Accepted for publication in "Astronomy and Astrophysics
Review"; The final publication is available at http://www.springerlink.co
Volatiles in protoplanetary disks
Volatiles are compounds with low sublimation temperatures, and they make up
most of the condensible mass in typical planet-forming environments. They
consist of relatively small, often hydrogenated, molecules based on the
abundant elements carbon, nitrogen and oxygen. Volatiles are central to the
process of planet formation, forming the backbone of a rich chemistry that sets
the initial conditions for the formation of planetary atmospheres, and act as a
solid mass reservoir catalyzing the formation of planets and planetesimals.
This growth has been driven by rapid advances in observations and models of
protoplanetary disks, and by a deepening understanding of the cosmochemistry of
the solar system. Indeed, it is only in the past few years that representative
samples of molecules have been discovered in great abundance throughout
protoplanetary disks - enough to begin building a complete budget for the most
abundant elements after hydrogen and helium. The spatial distributions of key
volatiles are being mapped, snow lines are directly seen and quantified, and
distinct chemical regions within protoplanetary disks are being identified,
characterized and modeled. Theoretical processes invoked to explain the solar
system record are now being observationally constrained in protoplanetary
disks, including transport of icy bodies and concentration of bulk
condensibles. The balance between chemical reset - processing of inner disk
material strong enough to destroy its memory of past chemistry, and inheritance
- the chemically gentle accretion of pristine material from the interstellar
medium in the outer disk, ultimately determines the final composition of
pre-planetary matter. This chapter focuses on making the first steps toward
understanding whether the planet formation processes that led to our solar
system are universal.Comment: Accepted for publication as a chapter in Protostars and Planets VI,
University of Arizona Press (2014), eds. H. Beuther, R. Klessen, C.
Dullemond, Th. Hennin
Baroclinic Vorticity Production in Protoplanetary Disks; Part I: Vortex Formation
The formation of vortices in protoplanetary disks is explored via
pseudo-spectral numerical simulations of an anelastic-gas model. This model is
a coupled set of equations for vorticity and temperature in two dimensions
which includes baroclinic vorticity production and radiative cooling. Vortex
formation is unambiguously shown to be caused by baroclinicity because (1)
these simulations have zero initial perturbation vorticity and a nonzero
initial temperature distribution; and (2) turning off the baroclinic term halts
vortex formation, as shown by an immediate drop in kinetic energy and
vorticity. Vortex strength increases with: larger background temperature
gradients; warmer background temperatures; larger initial temperature
perturbations; higher Reynolds number; and higher resolution. In the
simulations presented here vortices form when the background temperatures are
and vary radially as , the initial vorticity
perturbations are zero, the initial temperature perturbations are 5% of the
background, and the Reynolds number is . A sensitivity study consisting
of 74 simulations showed that as resolution and Reynolds number increase,
vortices can form with smaller initial temperature perturbations, lower
background temperatures, and smaller background temperature gradients. For the
parameter ranges of these simulations, the disk is shown to be convectively
stable by the Solberg-H{\o}iland criteria.Comment: Originally submitted to The Astrophysical Journal April 3, 2006;
resubmitted November 3, 2006; accepted Dec 5, 200
- …