39,838 research outputs found
Data mining in soft computing framework: a survey
The present article provides a survey of the available literature on data mining using soft computing. A categorization has been provided based on the different soft computing tools and their hybridizations used, the data mining function implemented, and the preference criterion selected by the model. The utility of the different soft computing methodologies is highlighted. Generally fuzzy sets are suitable for handling the issues related to understandability of patterns, incomplete/noisy data, mixed media information and human interaction, and can provide approximate solutions faster. Neural networks are nonparametric, robust, and exhibit good learning and generalization capabilities in data-rich environments. Genetic algorithms provide efficient search algorithms to select a model, from mixed media data, based on some preference criterion/objective function. Rough sets are suitable for handling different types of uncertainty in data. Some challenges to data mining and the application of soft computing methodologies are indicated. An extensive bibliography is also included
Soft computing techniques applied to finance
Soft computing is progressively gaining presence in the financial world. The number of real and potential applications is very large and, accordingly, so is the presence of applied research papers in the literature. The aim of this paper is both to present relevant application areas, and to serve as an introduction to the subject. This paper provides arguments that justify the growing interest in these techniques among the financial community and introduces domains of application such as stock and currency market prediction, trading, portfolio management, credit scoring or financial distress prediction areas.Publicad
Enabling Explainable Fusion in Deep Learning with Fuzzy Integral Neural Networks
Information fusion is an essential part of numerous engineering systems and
biological functions, e.g., human cognition. Fusion occurs at many levels,
ranging from the low-level combination of signals to the high-level aggregation
of heterogeneous decision-making processes. While the last decade has witnessed
an explosion of research in deep learning, fusion in neural networks has not
observed the same revolution. Specifically, most neural fusion approaches are
ad hoc, are not understood, are distributed versus localized, and/or
explainability is low (if present at all). Herein, we prove that the fuzzy
Choquet integral (ChI), a powerful nonlinear aggregation function, can be
represented as a multi-layer network, referred to hereafter as ChIMP. We also
put forth an improved ChIMP (iChIMP) that leads to a stochastic gradient
descent-based optimization in light of the exponential number of ChI inequality
constraints. An additional benefit of ChIMP/iChIMP is that it enables
eXplainable AI (XAI). Synthetic validation experiments are provided and iChIMP
is applied to the fusion of a set of heterogeneous architecture deep models in
remote sensing. We show an improvement in model accuracy and our previously
established XAI indices shed light on the quality of our data, model, and its
decisions.Comment: IEEE Transactions on Fuzzy System
Fuzzy Logic and Its Uses in Finance: A Systematic Review Exploring Its Potential to Deal with Banking Crises
The major success of fuzzy logic in the field of remote control opened the door to its application in many other fields, including finance. However, there has not been an updated and comprehensive literature review on the uses of fuzzy logic in the financial field. For that reason, this study attempts to critically examine fuzzy logic as an effective, useful method to be applied to financial research and, particularly, to the management of banking crises. The data sources were Web of Science and Scopus, followed by an assessment of the records according to pre-established criteria and an arrangement of the information in two main axes: financial markets and corporate finance. A major finding of this analysis is that fuzzy logic has not yet been used to address banking crises or as an alternative to ensure the resolvability of banks while minimizing the impact on the real economy. Therefore, we consider this article relevant for supervisory and regulatory bodies, as well as for banks and academic researchers, since it opens the door to several new research axes on banking crisis analyses using artificial intelligence techniques
AI and OR in management of operations: history and trends
The last decade has seen a considerable growth in the use of Artificial Intelligence (AI) for operations management with the aim of finding solutions to problems that are increasing in complexity and scale. This paper begins by setting the context for the survey through a historical perspective of OR and AI. An extensive survey of applications of AI techniques for operations management, covering a total of over 1200 papers published from 1995 to 2004 is then presented. The survey utilizes Elsevier's ScienceDirect database as a source. Hence, the survey may not cover all the relevant journals but includes a sufficiently wide range of publications to make it representative of the research in the field. The papers are categorized into four areas of operations management: (a) design, (b) scheduling, (c) process planning and control and (d) quality, maintenance and fault diagnosis. Each of the four areas is categorized in terms of the AI techniques used: genetic algorithms, case-based reasoning, knowledge-based systems, fuzzy logic and hybrid techniques. The trends over the last decade are identified, discussed with respect to expected trends and directions for future work suggested
Data-driven Soft Sensors in the Process Industry
In the last two decades Soft Sensors established themselves as a valuable alternative to the traditional means for the acquisition of critical process variables, process monitoring and other tasks which are related to process control. This paper discusses characteristics of the process industry data which are critical for the development of data-driven Soft Sensors. These characteristics are common to a large number of process industry fields, like the chemical industry, bioprocess industry, steel industry, etc. The focus of this work is put on the data-driven Soft Sensors because of their growing popularity, already demonstrated usefulness and huge, though yet not completely realised, potential. A comprehensive selection of case studies covering the three most important Soft Sensor application fields, a general introduction to the most popular Soft Sensor modelling techniques as well as a discussion of some open issues in the Soft Sensor development and maintenance and their possible solutions are the main contributions of this work
- …