3,728 research outputs found
Workshop on an Assessment of Gas-Side Fouling in Fossil Fuel Exhaust Environments
The state of the art of gas side fouling in fossil fuel exhaust environments was assessed. Heat recovery applications were emphasized. The deleterious effects of gas side fouling including increased energy consumption, increased material losses, and loss of production were identified
A survey of gas-side fouling in industrial heat-transfer equipment
Gas-side fouling and corrosion problems occur in all of the energy intensive industries including the chemical, petroleum, primary metals, pulp and paper, glass, cement, foodstuffs, and textile industries. Topics of major interest include: (1) heat exchanger design procedures for gas-side fouling service; (2) gas-side fouling factors which are presently available; (3) startup and shutdown procedures used to minimize the effects of gas-side fouling; (4) gas-side fouling prevention, mitigation, and accommodation techniques; (5) economic impact of gas-side fouling on capital costs, maintenance costs, loss of production, and energy losses; and (6) miscellaneous considerations related to gas-side fouling. The present state-of-the-art for industrial gas-side fouling is summarized by a list of recommendations for further work in this area
Combustion system processes leading to corrosive deposits
Degradation of turbine engine hot gas path components by high temperature corrosion can usually be associated with deposits even though other factors may also play a significant role. The origins of the corrosive deposits are traceable to chemical reactions which take place during the combustion process. In the case of hot corrosion/sulfidation, sodium sulfate was established as the deposited corrosive agent even when none of this salt enters the engine directly. The sodium sulfate is formed during the combustion and deposition processes from compounds of sulfur contained in the fuel as low level impurities and sodium compounds, such as sodium chloride, ingested with intake air. In other turbine and power generation situations, corrosive and/or fouling deposits can result from such metals as potassium, iron, calcium, vanadium, magnesium, and silicon
California Methanol Assessment; Volume II, Technical Report
A joint effort by the Jet Propulsion Laboratory and the California Institute of Technology Division of Chemistry and Chemical Engineering has brought together sponsors from both the public and private sectors for an analysis of the prospects for methanol use as a fuel in California, primarily for the transportation and stationary application sectors. Increasing optimism in 1982 for a slower rise in oil prices and a more realistic understanding of the costs of methanol production have had a negative effect on methanol viability in the near term (before the year 2000). Methanol was determined to have some promise in the transportation sector, but is not forecasted for large-scale use until beyond the year 2000. Similarly, while alternative use of methanol can have a positive effect on air quality (reducing NOx, SOx, and other emissions), a best case estimate is for less than 4% reduction in peak ozone by 2000 at realistic neat methanol vehicle adoption rates. Methanol is not likely to be a viable fuel in the stationary application sector because it cannot compete economically with conventional fuels except in very limited cases. On the production end, it was determined that methanol produced from natural gas will continue to dominate supply options through the year 2000, and the present and planned industry capacity is somewhat in excess of all projected needs. Nonsubsidized coal-based methanol cannot compete with conventional feedstocks using current technology, but coal-based methanol has promise in the long term (after the year 2000), providing that industry is willing to take the technical and market risks and that government agencies will help facilitate the environment for methanol.
Given that the prospects for viable major markets (stationary applications and neat fuel in passenger cars) are unlikely in the 1980s and early 1990s, the next steps for methanol are in further experimentation and research of production and utilization technologies, expanded use as an octane enhancer, and selected fleet implementation. In the view of the study, it is not advantageous at this time to establish policies within California that attempt to expand methanol use rapidly as a neat fuel for passenger cars or to induce electric utility use of methanol on a widespread basis
Fuel quality-processing study. Volume 2: Literature survey
The validity of initial assumptions about raw materials choices and relevant upgrading processing options was confirmed. The literature survey also served to define the on-site (at the turbine location) options for fuel treatment and exhaust gas treatment. The literature survey also contains a substantial compilation of specification and physical property information about liquid fuel products relevant to industrial gas turbines
Cofiring: technological option in Romania for promoting cleaner fossil fuels usage
Co-firing refers to the simultaneous or alternative utilisation of two or more fuels in a combustion unit for the purpose of heat/power generation and it has been successfully demonstrated in many installations worldwide for most combination of fuels, techniques and boiler types. It is a serious option that addresses the worlds current energy challenges by making use of several types of fuel, ranging from renewable resources to undesired wastes, being based on the already used and well known coal combustion technologies, and increasing the security of supply by using domestic fuel sources. The master thesis investigates the possibility of implementing such a co-firing project, comprising all the various steps needed to be considered in such a project/venture, in Romania
Energy Enhancement of Solid Recovered Fuel within Systems of Conventional Thermal Power Generation
Abstract The main objective of this article is to verify the feasibility, in terms of technical and economical issues, of a new refuse-derived fuel SRF (Solid Recovered Fuel) to be used as a new fuel in a thermal power station or in an incineration plants. By means of the innovative micronization technology it is possible to produce SRF suitable for the technical specifications of the plants which, taking into account appropriate modifications, could be reconverted and not decommissioned. The present energy supply scenario shows a partial contraction of the activities of power plant thermal generation despite an increase of the power demand and despite one of the highest energy cost in Europe. It is likely to surmise a gradual stall of such activities and finally the decommissioning due to the fact that plants will turn out to be not economically productive. On the other hand, it is now necessary to promote adequate policies for sustainable waste management. An opportunity in this sense is represented by the smart usage (made possible through innovative manufacturing processes) of the SRF as an energy source. The tests conducted on the innovative chemical-mechanical micronization technology showed an average energetic cost of 30 kWh/ton, and an average production cost of 15 €/ton for the 0.5 mm size. Combustion tests showed a good environmental and combustion performance. In this article, the refuse-derived fuel (which is governed according to the Decrees of the Ministry of Environment, Land and Sea) has been obtained through an innovative technology of chemical-mechanical micronization. We have also proceeded to verify the functional feasibility of the fuel production in order to feed incinerators and power plants in partial or total substitution of the conventional fuels (coal, fuel oil)
- …