22,402 research outputs found
Elastic properties of highly anisotropic thin poly(propylene) foams
In this letter, elastic properties of highly anisotropic cellular
poly(propylene) films are reported. The material shows peculiar elastic
properties compared to other foams in the literature. The data is displayed as
the relative Young's modulus versus relative density .
Almost all the data from the literature are located on the region
with . The introduced material on the
other hand have lower relative Young's modulus at high relative densities,
Imprinting the memory into paste and its visualization as crack patterns in drying process
In the drying process of paste, we can imprint into the paste the order how
it should be broken in the future. That is, if we vibrate the paste before it
is dried, it remembers the direction of the initial external vibration, and the
morphology of resultant crack patterns is determined solely by the memory of
the direction. The morphological phase diagram of crack patterns and the
rheological measurement of the paste show that this memory effect is induced by
the plasticity of paste.Comment: 4 pages, 3 figures, submitted to JPS
Bone mechanical properties in healthy and diseased states
The mechanical properties of bone are fundamental to the ability of our skeletons to support movement and to provide protection to our vital organs. As such, deterioration in mechanical behavior with aging and/or diseases such as osteoporosis and diabetes can have profound consequences for individuals’ quality of life. This article reviews current knowledge of the basic mechanical behavior of bone at length scales ranging from hundreds of nanometers to tens of centimeters. We present the basic tenets of bone mechanics and connect them to some of the arcs of research that have brought the field to recent advances. We also discuss cortical bone, trabecular bone, and whole bones, as well as multiple aspects of material behavior, including elasticity, yield, fracture, fatigue, and damage. We describe the roles of bone quantity (e.g., density, porosity) and bone quality (e.g., cross-linking, protein composition), along with several avenues of future research.Author manuscrip
Minkowski Tensors of Anisotropic Spatial Structure
This article describes the theoretical foundation of and explicit algorithms
for a novel approach to morphology and anisotropy analysis of complex spatial
structure using tensor-valued Minkowski functionals, the so-called Minkowski
tensors. Minkowski tensors are generalisations of the well-known scalar
Minkowski functionals and are explicitly sensitive to anisotropic aspects of
morphology, relevant for example for elastic moduli or permeability of
microstructured materials. Here we derive explicit linear-time algorithms to
compute these tensorial measures for three-dimensional shapes. These apply to
representations of any object that can be represented by a triangulation of its
bounding surface; their application is illustrated for the polyhedral Voronoi
cellular complexes of jammed sphere configurations, and for triangulations of a
biopolymer fibre network obtained by confocal microscopy. The article further
bridges the substantial notational and conceptual gap between the different but
equivalent approaches to scalar or tensorial Minkowski functionals in
mathematics and in physics, hence making the mathematical measure theoretic
method more readily accessible for future application in the physical sciences
Sensing the difference: the influence of anisotropic cues on cell behavior
From tissue morphogenesis to homeostasis, cells continuously experience and respond to physical, chemical and biological cues commonly presented in gradients. In this article we focus our discussion on the importance of nano/micro topographic cues on cell activity, and the role of anisotropic milieus play on cell behavior, mostly adhesion and migration. We present the need to study physiological gradients in vitro. To do this, we review different cell migration mechanisms and how adherent cells react to the presence of complex tissue-like environments and cell-surface stimulation in 2D and 3D (e.g. ventral/dorsal anisotropy)
A review of some recent developments in polarization-sensitive optical imaging techniques for the study of articular cartilage
This article reviews recent developments in the optical imaging of articular cartilage using polarized-light methods, with an emphasis on tools that could be of use in tissue engineering approaches to treatment. Both second-harmonic generation microscopy and polarization-sensitive optical coherence tomography are described and their potential role in the treatment of cartilage disorders such as osteoarthritis is suggested. Key results are reviewed and future developments are discussed
Extreme mechanical resilience of self-assembled nanolabyrinthine materials
Low-density materials with tailorable properties have attracted attention for decades, yet stiff materials that can resiliently tolerate extreme forces and deformation while being manufactured at large scales have remained a rare find. Designs inspired by nature, such as hierarchical composites and atomic lattice-mimicking architectures, have achieved optimal combinations of mechanical properties but suffer from limited mechanical tunability, limited long-term stability, and low-throughput volumes that stem from limitations in additive manufacturing techniques. Based on natural self-assembly of polymeric emulsions via spinodal decomposition, here we demonstrate a concept for the scalable fabrication of nonperiodic, shell-based ceramic materials with ultralow densities, possessing features on the order of tens of nanometers and sample volumes on the order of cubic centimeters. Guided by simulations of separation processes, we numerically show that the curvature of self-assembled shells can produce close to optimal stiffness scaling with density, and we experimentally demonstrate that a carefully chosen combination of topology, geometry, and base material results in superior mechanical resilience in the architected product. Our approach provides a pathway to harnessing self-assembly methods in the design and scalable fabrication of beyond-periodic and nonbeam-based nano-architected materials with simultaneous directional tunability, high stiffness, and unsurpassed recoverability with marginal deterioration
- …