16 research outputs found

    Π Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚Ρ‹ испытаний ΠΏΠΎΠ»ΠΈΠΌΠ΅Ρ€Π½ΠΎΠ³ΠΎ Ρ€Π°Π΄ΠΈΠ°Ρ‚ΠΎΡ€Π° систСмы охлаТдСния Ρ‚Ρ€Π°ΠΊΡ‚ΠΎΡ€Π° ΠœΠ’Π—-80

    Get PDF
    Global car manufacturers wish to increase the number of manufactured products, reduce their cost and labor input. The choice of research areas, design and technological developments in radiator construction is an extremely important and urgent task, due to the mass production of radiators for tractors and automobiles on the one hand, and the favorable development prospects of these interrelated industries, on the other. (Research purpose) To substantiate theoretically and experimentally the use of a combined cooling system containing both aluminum and polymeric water radiators and similarly liquid-oil heat exchangers based on the four principles listed above on automobiles and tractors. (Materials and methods) The authors performed bench tests using a special wind tunnel to study the thermal and aerodynamic characteristics of a prototype tractor radiator with a polyurethane core. After reaching the steady-state operating mode of the installation, the experimental values were determined for the control and measuring instruments. (Results and discussion) The authors carried out measurements of all parameters of both coolants in series at each steady-state operating mode of the bench. They obtained the main indicators dependences (reduced heat transfer, aerodynamic and hydraulic drag) of the heat exchanger, close to the operating conditions of the vehicles. (Conclusions) A prototype MTZ-80 radiator with a polyurethane core has great prospects as a future alternative radiator. An increase by 10-15 percent in the radiator heat transfer is possible by using aluminum fi ns on the surface of the polyurethane plate. A 15-20 percent reduction in hydrodynamic resistance is achieved by increasing the diameter of the capillary throughput in a polyurethane plate and the number of plates themselves in the radiator cell.ΠœΠΈΡ€ΠΎΠ²Ρ‹Π΅ ΠΏΡ€ΠΎΠΈΠ·Π²ΠΎΠ΄ΠΈΡ‚Π΅Π»ΠΈ Π°Π²Ρ‚ΠΎΠΌΠΎΠ±ΠΈΠ»Π΅ΠΉ стрСмятся ΠΏΠΎΠ²Ρ‹ΡΠΈΡ‚ΡŒ количСство выпускаСмой ΠΏΡ€ΠΎΠ΄ΡƒΠΊΡ†ΠΈΠΈ, ΡΠ½ΠΈΠ·ΠΈΡ‚ΡŒ Π΅Π΅ ΡΠ΅Π±Π΅ΡΡ‚ΠΎΠΈΠΌΠΎΡΡ‚ΡŒ ΠΈ Ρ‚Ρ€ΡƒΠ΄ΠΎΠ΅ΠΌΠΊΠΎΡΡ‚ΡŒ изготовлСния. Π’Ρ‹Π±ΠΎΡ€ Π½Π°ΠΏΡ€Π°Π²Π»Π΅Π½ΠΈΠΉ исслСдований, конструкторско-тСхнологичСских Ρ€Π°Π·Ρ€Π°Π±ΠΎΡ‚ΠΎΠΊ Π² радиаторостроСнии прСдставляСт собой Ρ‡Ρ€Π΅Π·Π²Ρ‹Ρ‡Π°ΠΉΠ½ΠΎ Π²Π°ΠΆΠ½ΡƒΡŽ ΠΈ Π°ΠΊΡ‚ΡƒΠ°Π»ΡŒΠ½ΡƒΡŽ Π·Π°Π΄Π°Ρ‡Ρƒ, ΠΎΠ±ΡƒΡΠ»ΠΎΠ²Π»Π΅Π½Π½ΡƒΡŽ с ΠΎΠ΄Π½ΠΎΠΉ стороны ΠΌΠ°ΡΡΠΎΠ²ΠΎΡΡ‚ΡŒΡŽ производства Ρ€Π°Π΄ΠΈΠ°Ρ‚ΠΎΡ€ΠΎΠ² для Ρ‚Ρ€Π°ΠΊΡ‚ΠΎΡ€ΠΎΠ² ΠΈ Π°Π²Ρ‚ΠΎΠΌΠΎΠ±ΠΈΠ»Π΅ΠΉ, с Π΄Ρ€ΡƒΠ³ΠΎΠΉ – благоприятными пСрспСктивами развития этих взаимосвязанных отраслСй. (ЦСль исслСдования) ΠžΠ±ΠΎΡΠ½ΠΎΠ²Π°Ρ‚ΡŒ тСорСтичСски ΠΈ ΡΠΊΡΠΏΠ΅Ρ€ΠΈΠΌΠ΅Π½Ρ‚Π°Π»ΡŒΠ½ΠΎ использованиС Π½Π° автомобилях ΠΈ Ρ‚Ρ€Π°ΠΊΡ‚ΠΎΡ€Π°Ρ… ΠΊΠΎΠΌΠ±ΠΈΠ½ΠΈΡ€ΠΎΠ²Π°Π½Π½ΠΎΠΉ систСмы охлаТдСния, содСрТащСй ΠΊΠ°ΠΊ Π°Π»ΡŽΠΌΠΈΠ½ΠΈΠ΅Π²Ρ‹Π΅, Ρ‚Π°ΠΊ ΠΈ ΠΏΠΎΠ»ΠΈΠΌΠ΅Ρ€Π½Ρ‹Π΅ водяныС Ρ€Π°Π΄ΠΈΠ°Ρ‚ΠΎΡ€Ρ‹ ΠΈ Π°Π½Π°Π»ΠΎΠ³ΠΈΡ‡Π½ΠΎ Тидкостно-масляныС Ρ‚Π΅ΠΏΠ»ΠΎΠΎΠ±ΠΌΠ΅Π½Π½ΠΈΠΊΠΈ, созданныС Π½Π° основС систСмы ΠΏΠ°Ρ€Π°ΠΌΠ΅Ρ‚Ρ€ΠΎΠ² для комплСксной ΠΎΡ†Π΅Π½ΠΊΠΈ Π°Π²Ρ‚ΠΎΡ‚Ρ€Π°ΠΊΡ‚ΠΎΡ€Π½Ρ‹Ρ… Ρ‚Π΅ΠΏΠ»ΠΎΠΎΠ±ΠΌΠ΅Π½Π½ΠΈΠΊΠΎΠ². (ΠœΠ°Ρ‚Π΅Ρ€ΠΈΠ°Π»Ρ‹ ΠΈ ΠΌΠ΅Ρ‚ΠΎΠ΄Ρ‹) Π’Ρ‹ΠΏΠΎΠ»Π½ΠΈΠ»ΠΈ стСндовыС испытания с использованиСм ΡΠΏΠ΅Ρ†ΠΈΠ°Π»ΡŒΠ½ΠΎΠΉ аэродинамичСской Ρ‚Ρ€ΡƒΠ±Ρ‹ для исслСдования Ρ‚Π΅ΠΏΠ»ΠΎΠ²Ρ‹Ρ… ΠΈ аэродинамичСских характСристик ΠΎΠΏΡ‹Ρ‚Π½ΠΎΠ³ΠΎ ΠΎΠ±Ρ€Π°Π·Ρ†Π° Ρ‚Ρ€Π°ΠΊΡ‚ΠΎΡ€Π½ΠΎΠ³ΠΎ Ρ€Π°Π΄ΠΈΠ°Ρ‚ΠΎΡ€Π° с ΠΏΠΎΠ»ΠΈΡƒΡ€Π΅Ρ‚Π°Π½ΠΎΠ²ΠΎΠΉ сСрдцСвиной. ΠžΠΏΡ€Π΅Π΄Π΅Π»ΠΈΠ»ΠΈ послС достиТСнии ΡƒΡΡ‚Π°Π½ΠΎΠ²ΠΈΠ²ΡˆΠ΅Π³ΠΎΡΡ Ρ€Π΅ΠΆΠΈΠΌΠ° Ρ€Π°Π±ΠΎΡ‚Ρ‹ установки ΠΎΠΏΡ‹Ρ‚Π½Ρ‹Π΅ Π²Π΅Π»ΠΈΡ‡ΠΈΠ½Ρ‹ ΠΏΠΎ ΠΊΠΎΠ½Ρ‚Ρ€ΠΎΠ»ΡŒΠ½ΠΎ-ΠΈΠ·ΠΌΠ΅Ρ€ΠΈΡ‚Π΅Π»ΡŒΠ½Ρ‹ΠΌ ΠΏΡ€ΠΈΠ±ΠΎΡ€Π°ΠΌ. (Π Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚Ρ‹ ΠΈ обсуТдСниС) ΠŸΡ€ΠΎΠ²Π΅Π»ΠΈ измСрСния всСх ΠΏΠ°Ρ€Π°ΠΌΠ΅Ρ‚Ρ€ΠΎΠ² ΠΎΠ±ΠΎΠΈΡ… тСплоноситСлСй ΠΏΠΎΡΠ»Π΅Π΄ΠΎΠ²Π°Ρ‚Π΅Π»ΡŒΠ½ΠΎ Π½Π° ΠΊΠ°ΠΆΠ΄ΠΎΠΌ ΡƒΡΡ‚Π°Π½ΠΎΠ²ΠΈΠ²ΡˆΠ΅ΠΌΡΡ Ρ€Π΅ΠΆΠΈΠΌΠ΅ Ρ€Π°Π±ΠΎΡ‚Ρ‹ стСнда. ΠŸΠΎΠ»ΡƒΡ‡ΠΈΠ»ΠΈ зависимости основных ΠΏΠΎΠΊΠ°Π·Π°Ρ‚Π΅Π»Π΅ΠΉ (привСдСнная Ρ‚Π΅ΠΏΠ»ΠΎΠΎΡ‚Π΄Π°Ρ‡Π°, аэродинамичСскоС ΠΈ гидравличСскоС сопротивлСния) Ρ€Π°Π±ΠΎΡ‚Ρ‹ Ρ‚Π΅ΠΏΠ»ΠΎΠΎΠ±ΠΌΠ΅Π½Π½ΠΈΠΊΠ°, ΠΏΡ€ΠΈΠ±Π»ΠΈΠΆΠ΅Π½Π½Ρ‹Π΅ ΠΊ условиям эксплуатации транспортных срСдств. (Π’Ρ‹Π²ΠΎΠ΄Ρ‹) ΠžΠΏΡ‹Ρ‚Π½Ρ‹ΠΉ ΠΎΠ±Ρ€Π°Π·Π΅Ρ† Ρ€Π°Π΄ΠΈΠ°Ρ‚ΠΎΡ€Π° ΠœΠ’Π—-80 с ΠΏΠΎΠ»ΠΈΡƒΡ€Π΅Ρ‚Π°Π½ΠΎΠ²ΠΎΠΉ сСрдцСвиной ΠΈΠΌΠ΅Π΅Ρ‚ большиС пСрспСктивы Π² качСствС Π°Π»ΡŒΡ‚Π΅Ρ€Π½Π°Ρ‚ΠΈΠ²Π½ΠΎΠ³ΠΎ Ρ€Π°Π΄ΠΈΠ°Ρ‚ΠΎΡ€Π° Π±ΡƒΠ΄ΡƒΡ‰Π΅Π³ΠΎ. ΠŸΠΎΠ²Ρ‹ΡˆΠ΅Π½ΠΈΠ΅ Ρ‚Π΅ΠΏΠ»ΠΎΠΎΡ‚Π΄Π°Ρ‡ΠΈ Ρ€Π°Π΄ΠΈΠ°Ρ‚ΠΎΡ€Π° Π½Π° 10-15 ΠΏΡ€ΠΎΡ†Π΅Π½Ρ‚ΠΎΠ² Π²ΠΎΠ·ΠΌΠΎΠΆΠ½ΠΎ ΠΏΡ€ΠΈ ΠΏΠΎΠΌΠΎΡ‰ΠΈ использования алюминиСвого орСбрСния Π½Π° повСрхности ΠΏΠΎΠ»ΠΈΡƒΡ€Π΅Ρ‚Π°Π½ΠΎΠ²ΠΎΠΉ пластины. Π‘Π½ΠΈΠΆΠ΅Π½ΠΈΠ΅ гидродинамичСского сопротивлСния Π½Π° 15-20 ΠΏΡ€ΠΎΡ†Π΅Π½Ρ‚ΠΎΠ² достигаСтся Π·Π° счСт увСличСния Π΄ΠΈΠ°ΠΌΠ΅Ρ‚Ρ€Π° пропускной способности капилляров Π² ΠΏΠΎΠ»ΠΈΡƒΡ€Π΅Ρ‚Π°Π½ΠΎΠ²ΠΎΠΉ пластинС ΠΈ количСства самих пластин Π² сотС Ρ€Π°Π΄ΠΈΠ°Ρ‚ΠΎΡ€Π°

    ΠœΠ΅Ρ‚ΠΎΠ΄ΠΈΠΊΠ° расчСта масляных Ρ€Π°Π΄ΠΈΠ°Ρ‚ΠΎΡ€ΠΎΠ² Π°Π²Ρ‚ΠΎΡ‚Ρ€Π°ΠΊΡ‚ΠΎΡ€Π½ΠΎΠΉ Ρ‚Π΅Ρ…Π½ΠΈΠΊΠΈ

    Get PDF
    The paper highlights the relevance of the problem of determining the amount of heat supplied by an internal combustion engine to a liquid cooling system when creating typical series of unified heat exchangers for tractor and combine engines (power units). A properly designed cooling system further guarantees the maintenance of the optimal thermal mode for the engine operation. A methodology for calculating the coolant characteristics of the cooling system was proposed in order to prevent possible problems related to increased parts wear, early loss of oil lubricating properties, the engine (individual units) and rubbing parts overheating, a decrease in engine power and a deterioration in the quality of the fuel-air mixture entering the cylinders.Research purpose To develop a methodology for calculating the amount of heat to be dissipated by the oil radiators of a liquid cooling system (lubrication system) being exposed to various load and engine speed modes.Materials and methods It was proposed to determine the amount of heat to be dissipated by the liquid-oil heat exchanger of the engine lube oil cooling system.Results and discussion The calculation method for oil radiators presents the calculation of the heat obtained by oil during the operation of 37-110 kilowatts automotive engines. The heat-dissipating ability of the oil surface is determined. A parameter taking into account the oil radiator heat flow is identified. The graphs of the oil surface and heat flux dependence on the engine power are presented.Conclusions The method for calculating the temperature and dynamic characteristics of the automotive engine cooling system has been developed. It makes it possible to carry out research on the radiator thermal and technical characteristics in various operating modes of machines and coolants of systems, various heat exchanger structural materials (metal, polymer), with an error of 1.5-8.0 percent.Показали Π°ΠΊΡ‚ΡƒΠ°Π»ΡŒΠ½ΠΎΡΡ‚ΡŒ ΠΏΡ€ΠΎΠ±Π»Π΅ΠΌΡ‹ опрСдСлСния количСства Ρ‚Π΅ΠΏΠ»ΠΎΡ‚Ρ‹, ΠΎΡ‚Π΄Π°Π²Π°Π΅ΠΌΠΎΠΉ Π΄Π²ΠΈΠ³Π°Ρ‚Π΅Π»Π΅ΠΌ Π²Π½ΡƒΡ‚Ρ€Π΅Π½Π½Π΅Π³ΠΎ сгорания Π² ΠΆΠΈΠ΄ΠΊΠΎΡΡ‚Π½ΡƒΡŽ систСму охлаТдСния ΠΏΡ€ΠΈ создании Ρ‚ΠΈΠΏΠΎΡ€Π°Π·ΠΌΠ΅Ρ€Π½Ρ‹Ρ… рядов ΡƒΠ½ΠΈΡ„ΠΈΡ†ΠΈΡ€ΠΎΠ²Π°Π½Π½Ρ‹Ρ… Ρ‚Π΅ΠΏΠ»ΠΎΠΎΠ±ΠΌΠ΅Π½Π½ΠΈΠΊΠΎΠ² Ρ‚Ρ€Π°ΠΊΡ‚ΠΎΡ€Π½Ρ‹Ρ… ΠΈ ΠΊΠΎΠΌΠ±Π°ΠΉΠ½ΠΎΠ²Ρ‹Ρ… Π΄Π²ΠΈΠ³Π°Ρ‚Π΅Π»Π΅ΠΉ (силовых Π°Π³Ρ€Π΅Π³Π°Ρ‚ΠΎΠ²). ΠžΡ‚ΠΌΠ΅Ρ‚ΠΈΠ»ΠΈ, Ρ‡Ρ‚ΠΎ ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎ спроСктированная систСма охлаТдСния Π² дальнСйшСм Π³Π°Ρ€Π°Π½Ρ‚ΠΈΡ€ΡƒΠ΅Ρ‚ ΠΏΠΎΠ΄Π΄Π΅Ρ€ΠΆΠ°Π½ΠΈΠ΅ ΠΎΠΏΡ‚ΠΈΠΌΠ°Π»ΡŒΠ½ΠΎΠ³ΠΎ Ρ‚Π΅ΠΏΠ»ΠΎΠ²ΠΎΠ³ΠΎ Ρ€Π΅ΠΆΠΈΠΌΠ° Ρ€Π°Π±ΠΎΡ‚Ρ‹ двигатСля. ΠŸΡ€Π΅Π΄Π»ΠΎΠΆΠΈΠ»ΠΈ ΠΌΠ΅Π΄ΠΎΠ΄ΠΈΠΊΡƒ расчСта тСплоносных характСристик систСмы охлаТдСния для Π·Π°Π±Π»Π°Π³ΠΎΠ²Ρ€Π΅ΠΌΠ΅Π½Π½ΠΎΠ³ΠΎ ΠΈΡΠΊΠ»ΡŽΡ‡Π΅Π½ΠΈΡ Π²ΠΎΠ·ΠΌΠΎΠΆΠ½Ρ‹Ρ… ΠΏΡ€ΠΎΠ±Π»Π΅ΠΌ, связанных с ΠΏΠΎΠ²Ρ‹ΡˆΠ΅Π½Π½Ρ‹ΠΌ износом Π΄Π΅Ρ‚Π°Π»Π΅ΠΉ, ΠΏΡ€Π΅ΠΆΠ΄Π΅Π²Ρ€Π΅ΠΌΠ΅Π½Π½ΠΎΠΉ ΠΏΠΎΡ‚Π΅Ρ€Π΅ΠΉ маслом ΡΠΌΠ°Π·Ρ‹Π²Π°ΡŽΡ‰ΠΈΡ… свойств, ΠΏΠ΅Ρ€Π΅Π³Ρ€Π΅Π²ΠΎΠΌ двигатСля (ΠΎΡ‚Π΄Π΅Π»ΡŒΠ½Ρ‹Ρ… Π°Π³Ρ€Π΅Π³Π°Ρ‚ΠΎΠ²) ΠΈ трущихся Π΄Π΅Ρ‚Π°Π»Π΅ΠΉ, сниТСниСм мощности двигатСля ΠΈ ΡƒΡ…ΡƒΠ΄ΡˆΠ΅Π½ΠΈΠ΅ΠΌ качСства Ρ‚ΠΎΠΏΠ»ΠΈΠ²ΠΎ-Π²ΠΎΠ·Π΄ΡƒΡˆΠ½ΠΎΠΉ смСси, ΠΏΠΎΡΡ‚ΡƒΠΏΠ°ΡŽΡ‰Π΅ΠΉ Π² Ρ†ΠΈΠ»ΠΈΠ½Π΄Ρ€Ρ‹.ЦСль исслСдования Π Π°Π·Ρ€Π°Π±ΠΎΡ‚Π°Ρ‚ΡŒ ΠΌΠ΅Ρ‚ΠΎΠ΄ΠΈΠΊΡƒ расчСта количСства Ρ‚Π΅ΠΏΠ»ΠΎΡ‚Ρ‹, ΠΊΠΎΡ‚ΠΎΡ€ΠΎΠ΅ Π΄ΠΎΠ»ΠΆΠ½ΠΎ Π±Ρ‹Ρ‚ΡŒ рассСяно масляными Ρ€Π°Π΄ΠΈΠ°Ρ‚ΠΎΡ€Π°ΠΌΠΈ Тидкостной систСмы охлаТдСния (систСмы смазки) ΠΏΡ€ΠΈ Ρ€Π°Π·Π»ΠΈΡ‡Π½Ρ‹Ρ… Π½Π°Π³Ρ€ΡƒΠ·ΠΎΡ‡Π½Ρ‹Ρ… ΠΈ скоростных Ρ€Π΅ΠΆΠΈΠΌΠ°Ρ… Ρ€Π°Π±ΠΎΡ‚Ρ‹ двигатСля.ΠœΠ°Ρ‚Π΅Ρ€ΠΈΠ°Π»Ρ‹ ΠΈ ΠΌΠ΅Ρ‚ΠΎΠ΄Ρ‹ ΠŸΡ€Π΅Π΄Π»ΠΎΠΆΠΈΠ»ΠΈ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ количСство Ρ‚Π΅ΠΏΠ»ΠΎΡ‚Ρ‹, ΠΊΠΎΡ‚ΠΎΡ€ΠΎΠ΅ Π΄ΠΎΠ»ΠΆΠ½ΠΎ Π±Ρ‹Ρ‚ΡŒ рассСяно Тидкостно-масляным Ρ‚Π΅ΠΏΠ»ΠΎΠΎΠ±ΠΌΠ΅Π½Π½ΠΈΠΊΠΎΠΌ систСмы охлаТдСния смазочного масла двигатСля.Π Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚Ρ‹ ΠΈ обсуТдСниС Π’ ΠΌΠ΅Ρ‚ΠΎΠ΄ΠΈΠΊΠ΅ расчСта масляных Ρ€Π°Π΄ΠΈΠ°Ρ‚ΠΎΡ€ΠΎΠ² прСдставили расчСт Ρ‚Π΅ΠΏΠ»Π°, ΠΏΠΎΠ»ΡƒΡ‡Π΅Π½Π½ΠΎΠ³ΠΎ маслом Π² процСссС Ρ€Π°Π±ΠΎΡ‚Ρ‹ Π°Π²Ρ‚ΠΎΡ‚Ρ€Π°ΠΊΡ‚ΠΎΡ€Π½Ρ‹Ρ… Π΄Π²ΠΈΠ³Π°Ρ‚Π΅Π»Π΅ΠΉ ΠΌΠΎΡ‰Π½ΠΎΡΡ‚ΡŒΡŽ 37-110 ΠΊΠΈΠ»ΠΎΠ²Π°Ρ‚Ρ‚. ΠžΠΏΡ€Π΅Π΄Π΅Π»ΠΈΠ»ΠΈ Ρ‚Π΅ΠΏΠ»ΠΎΡ€Π°ΡΡΠ΅ΠΈΠ²Π°ΡŽΡ‰ΡƒΡŽ ΡΠΏΠΎΡΠΎΠ±Π½ΠΎΡΡ‚ΡŒ масляной повСрхности. Выявили ΠΏΠ°Ρ€Π°ΠΌΠ΅Ρ‚Ρ€, ΡƒΡ‡ΠΈΡ‚Ρ‹Π²Π°ΡŽΡ‰ΠΈΠΉ Ρ‚Π΅ΠΏΠ»ΠΎΠ²ΠΎΠΉ ΠΏΠΎΡ‚ΠΎΠΊ масляных Ρ€Π°Π΄ΠΈΠ°Ρ‚ΠΎΡ€ΠΎΠ². ΠŸΡ€Π΅Π΄ΡΡ‚Π°Π²ΠΈΠ»ΠΈ Π³Ρ€Π°Ρ„ΠΈΠΊΠΈ зависимости масляной повСрхности ΠΈ Ρ‚Π΅ΠΏΠ»ΠΎΠ²ΠΎΠ³ΠΎ ΠΏΠΎΡ‚ΠΎΠΊΠ° ΠΎΡ‚ мощности двигатСля.Π’Ρ‹Π²ΠΎΠ΄Ρ‹ Π Π°Π·Ρ€Π°Π±ΠΎΡ‚Π°Π»ΠΈ ΠΌΠ΅Ρ‚ΠΎΠ΄ΠΈΠΊΡƒ расчСта ΠΏΠΎΠΊΠ°Π·Π°Ρ‚Π΅Π»Π΅ΠΉ Ρ‚Π΅ΠΌΠΏΠ΅Ρ€Π°Ρ‚ΡƒΡ€Π½ΠΎ-динамичСских характСристик ΠΎΡ…Π»Π°ΠΆΠ΄Π°ΡŽΡ‰Π΅ΠΉ систСмы Π°Π²Ρ‚ΠΎΡ‚Ρ€Π°ΠΊΡ‚ΠΎΡ€Π½Ρ‹Ρ… Π΄Π²ΠΈΠ³Π°Ρ‚Π΅Π»Π΅ΠΉ, которая позволяСт ΠΏΡ€ΠΎΠ²ΠΎΠ΄ΠΈΡ‚ΡŒ исслСдования ΠΏΠΎ тСплотСхничСским показатСлям Ρ€Π°Π΄ΠΈΠ°Ρ‚ΠΎΡ€ΠΎΠ² Π½Π° Ρ€Π°Π·Π»ΠΈΡ‡Π½Ρ‹Ρ… Ρ€Π΅ΠΆΠΈΠΌΠ°Ρ… Ρ€Π°Π±ΠΎΡ‚Ρ‹ машин ΠΈ тСплоноситСлях систСм, конструкционных ΠΌΠ°Ρ‚Π΅Ρ€ΠΈΠ°Π»Π°Ρ… (ΠΌΠ΅Ρ‚Π°Π»Π», ΠΏΠΎΠ»ΠΈΠΌΠ΅Ρ€) Ρ‚Π΅ΠΏΠ»ΠΎΠΎΠ±ΠΌΠ΅Π½Π½ΠΈΠΊΠΎΠ² с ΡƒΡ‡Π΅Ρ‚ΠΎΠΌ Ρ„Π°ΠΊΡ‚ΠΎΡ€ΠΎΠ² ΠΈ Ρ€Π΅ΠΆΠΈΠΌΠΎΠ² Ρ€Π°Π±ΠΎΡ‚Ρ‹ с ΠΏΠΎΠ³Ρ€Π΅ΡˆΠ½ΠΎΡΡ‚ΡŒΡŽ 1,5-8,0 ΠΏΡ€ΠΎΡ†Π΅Π½Ρ‚ΠΎΠ²

    Test Results of a Polymer Radiator of MTZ-80 Tractor Cooling System

    Get PDF
    Global car manufacturers wish to increase the number of manufactured products, reduce their cost and labor input. The choice of research areas, design and technological developments in radiator construction is an extremely important and urgent task, due to the mass production of radiators for tractors and automobiles on the one hand, and the favorable development prospects of these interrelated industries, on the other. (Research purpose) To substantiate theoretically and experimentally the use of a combined cooling system containing both aluminum and polymeric water radiators and similarly liquid-oil heat exchangers based on the four principles listed above on automobiles and tractors. (Materials and methods) The authors performed bench tests using a special wind tunnel to study the thermal and aerodynamic characteristics of a prototype tractor radiator with a polyurethane core. After reaching the steady-state operating mode of the installation, the experimental values were determined for the control and measuring instruments. (Results and discussion) The authors carried out measurements of all parameters of both coolants in series at each steady-state operating mode of the bench. They obtained the main indicators dependences (reduced heat transfer, aerodynamic and hydraulic drag) of the heat exchanger, close to the operating conditions of the vehicles. (Conclusions) A prototype MTZ-80 radiator with a polyurethane core has great prospects as a future alternative radiator. An increase by 10-15 percent in the radiator heat transfer is possible by using aluminum fi ns on the surface of the polyurethane plate. A 15-20 percent reduction in hydrodynamic resistance is achieved by increasing the diameter of the capillary throughput in a polyurethane plate and the number of plates themselves in the radiator cell

    Π—Π½Π°Π½ΠΈΠ΅ иностранного языка ΠΊΠ°ΠΊ основной Ρ„Π°ΠΊΡ‚ΠΎΡ€ для Ρ€Π°Π±ΠΎΡ‚Ρ‹ Π² ΠΈΠ½Π½ΠΎΠ²Π°Ρ†ΠΈΠΎΠ½Π½Ρ‹Ρ… условиях

    Get PDF
    Π’ сборник Π²ΠΊΠ»ΡŽΡ‡Π΅Π½Ρ‹ ΠΌΠ°Ρ‚Π΅Ρ€ΠΈΠ°Π»Ρ‹ Π΄ΠΎΠΊΠ»Π°Π΄ΠΎΠ² 80-ΠΉ студСнчСкой Π½Π°ΡƒΡ‡Π½ΠΎ-тСхничСской ΠΊΠΎΠ½Ρ„Π΅Ρ€Π΅Π½Ρ†ΠΈΠΈ Β«Π—Π½Π°Π½ΠΈΠ΅ иностранного языка ΠΊΠ°ΠΊ основной Ρ„Π°ΠΊΡ‚ΠΎΡ€ для Ρ€Π°Π±ΠΎΡ‚Ρ‹ Π² ΠΈΠ½Π½ΠΎΠ²Π°Ρ†ΠΈΠΎΠ½Π½Ρ‹Ρ… условиях» ΠΏΠΎ ΠΊΠ°Ρ„Π΅Π΄Ρ€Π΅ «Английский язык β„–1Β» Ρ„Π°ΠΊΡƒΠ»ΡŒΡ‚Π΅Ρ‚Π° Π³ΠΎΡ€Π½ΠΎΠ³ΠΎ Π΄Π΅Π»Π° ΠΈ ΠΈΠ½ΠΆΠ΅Π½Π΅Ρ€Π½ΠΎΠΉ экологии

    Evaluation of Ultra Clean Fuels from Natural Gas

    Full text link

    BioMet2020 project final report

    Get PDF

    BioMet2020 project final report

    Get PDF

    Theoretical and experimental investigation of a CDI injection system operating on neat rapeseed oil - feasibility and operational studies

    Get PDF
    This thesis presents the work done within the PhD research project focusing on the utilisation of plant oils in Common Rail (CR) diesel engines. The work scope included fundamental experimental studies of rapeseed oil (RSO) in comparison to diesel fuel, the feasibility analysis of diesel substitution with various plant oils, the definition and implementation of modifications of a common rail injection system and future work recommendations of possible changes to the injection system. It was recognised that neat plant oils can be considered as an alternative substitute for diesel fuel offering a natural way to balance the CO2 emissions. However, due to the differences between diesel and plant oils, such as density, viscosity and surface tension, the direct application of plant oils in common rail diesel engines could cause degradation of the injection process and in turn adversely affect the diesel engine’s performance. RSO was chosen to perform the spray characterisation studies at various injection pressures and oil temperatures under conditions similar to the operation of the common rail engine. High speed camera, Phase Doppler Anemometry and Malvern laser techniques were used to study spray penetration length and cone angle of RSO in comparison to diesel. To study the internal flow inside the CR injector the acoustic emission technique was applied. It was found that for oil temperatures below 40Β°C the RSO viscosity, density and surface tension are higher in comparison to diesel, therefore at injection pressures around 37.50 MPa the RSO spray is not fully developed. The spray penetration and cone angle at these spray conditions exhibit significant spray deterioration. In addition to the lab experiments, KIVA code simulated RSO sprays under CR conditions. The KH-RT and RD breakup models were successfully applied to simulate the non-evaporating sprays corresponding to the experimental spray tests and finally to predict i real in-cylinder injection conditions. Numerical results showed acceptable agreement with the experimental data of RSO penetration. Based on experimental and numerical results it was concluded that elevated temperature and injection pressure could be the efficient measures to overcome operational obstacles when using RSO in the CR diesel engine. A series of modifications of low- and highpressure loops was performed and experimentally assessed throughout the engine tests. The results revealed that the modifications allowed to run the engine at the power and emission outputs very close to diesel operation. However, more fundamental changes were suggested as future work to ensure efficient and trouble-free long-term operation. It is believed that these changed should be applied to meet Euro IV and V requirements
    corecore