16 research outputs found
Π Π΅Π·ΡΠ»ΡΡΠ°ΡΡ ΠΈΡΠΏΡΡΠ°Π½ΠΈΠΉ ΠΏΠΎΠ»ΠΈΠΌΠ΅ΡΠ½ΠΎΠ³ΠΎ ΡΠ°Π΄ΠΈΠ°ΡΠΎΡΠ° ΡΠΈΡΡΠ΅ΠΌΡ ΠΎΡ Π»Π°ΠΆΠ΄Π΅Π½ΠΈΡ ΡΡΠ°ΠΊΡΠΎΡΠ° ΠΠ’Π-80
Global car manufacturers wish to increase the number of manufactured products, reduce their cost and labor input. The choice of research areas, design and technological developments in radiator construction is an extremely important and urgent task, due to the mass production of radiators for tractors and automobiles on the one hand, and the favorable development prospects of these interrelated industries, on the other. (Research purpose) To substantiate theoretically and experimentally the use of a combined cooling system containing both aluminum and polymeric water radiators and similarly liquid-oil heat exchangers based on the four principles listed above on automobiles and tractors. (Materials and methods) The authors performed bench tests using a special wind tunnel to study the thermal and aerodynamic characteristics of a prototype tractor radiator with a polyurethane core. After reaching the steady-state operating mode of the installation, the experimental values were determined for the control and measuring instruments. (Results and discussion) The authors carried out measurements of all parameters of both coolants in series at each steady-state operating mode of the bench. They obtained the main indicators dependences (reduced heat transfer, aerodynamic and hydraulic drag) of the heat exchanger, close to the operating conditions of the vehicles. (Conclusions) A prototype MTZ-80 radiator with a polyurethane core has great prospects as a future alternative radiator. An increase by 10-15 percent in the radiator heat transfer is possible by using aluminum fi ns on the surface of the polyurethane plate. A 15-20 percent reduction in hydrodynamic resistance is achieved by increasing the diameter of the capillary throughput in a polyurethane plate and the number of plates themselves in the radiator cell.ΠΠΈΡΠΎΠ²ΡΠ΅ ΠΏΡΠΎΠΈΠ·Π²ΠΎΠ΄ΠΈΡΠ΅Π»ΠΈ Π°Π²ΡΠΎΠΌΠΎΠ±ΠΈΠ»Π΅ΠΉ ΡΡΡΠ΅ΠΌΡΡΡΡ ΠΏΠΎΠ²ΡΡΠΈΡΡ ΠΊΠΎΠ»ΠΈΡΠ΅ΡΡΠ²ΠΎ Π²ΡΠΏΡΡΠΊΠ°Π΅ΠΌΠΎΠΉ ΠΏΡΠΎΠ΄ΡΠΊΡΠΈΠΈ, ΡΠ½ΠΈΠ·ΠΈΡΡ Π΅Π΅ ΡΠ΅Π±Π΅ΡΡΠΎΠΈΠΌΠΎΡΡΡ ΠΈ ΡΡΡΠ΄ΠΎΠ΅ΠΌΠΊΠΎΡΡΡ ΠΈΠ·Π³ΠΎΡΠΎΠ²Π»Π΅Π½ΠΈΡ. ΠΡΠ±ΠΎΡ Π½Π°ΠΏΡΠ°Π²Π»Π΅Π½ΠΈΠΉ ΠΈΡΡΠ»Π΅Π΄ΠΎΠ²Π°Π½ΠΈΠΉ, ΠΊΠΎΠ½ΡΡΡΡΠΊΡΠΎΡΡΠΊΠΎ-ΡΠ΅Ρ
Π½ΠΎΠ»ΠΎΠ³ΠΈΡΠ΅ΡΠΊΠΈΡ
ΡΠ°Π·ΡΠ°Π±ΠΎΡΠΎΠΊ Π² ΡΠ°Π΄ΠΈΠ°ΡΠΎΡΠΎΡΡΡΠΎΠ΅Π½ΠΈΠΈ ΠΏΡΠ΅Π΄ΡΡΠ°Π²Π»ΡΠ΅Ρ ΡΠΎΠ±ΠΎΠΉ ΡΡΠ΅Π·Π²ΡΡΠ°ΠΉΠ½ΠΎ Π²Π°ΠΆΠ½ΡΡ ΠΈ Π°ΠΊΡΡΠ°Π»ΡΠ½ΡΡ Π·Π°Π΄Π°ΡΡ, ΠΎΠ±ΡΡΠ»ΠΎΠ²Π»Π΅Π½Π½ΡΡ Ρ ΠΎΠ΄Π½ΠΎΠΉ ΡΡΠΎΡΠΎΠ½Ρ ΠΌΠ°ΡΡΠΎΠ²ΠΎΡΡΡΡ ΠΏΡΠΎΠΈΠ·Π²ΠΎΠ΄ΡΡΠ²Π° ΡΠ°Π΄ΠΈΠ°ΡΠΎΡΠΎΠ² Π΄Π»Ρ ΡΡΠ°ΠΊΡΠΎΡΠΎΠ² ΠΈ Π°Π²ΡΠΎΠΌΠΎΠ±ΠΈΠ»Π΅ΠΉ, Ρ Π΄ΡΡΠ³ΠΎΠΉ β Π±Π»Π°Π³ΠΎΠΏΡΠΈΡΡΠ½ΡΠΌΠΈ ΠΏΠ΅ΡΡΠΏΠ΅ΠΊΡΠΈΠ²Π°ΠΌΠΈ ΡΠ°Π·Π²ΠΈΡΠΈΡ ΡΡΠΈΡ
Π²Π·Π°ΠΈΠΌΠΎΡΠ²ΡΠ·Π°Π½Π½ΡΡ
ΠΎΡΡΠ°ΡΠ»Π΅ΠΉ. (Π¦Π΅Π»Ρ ΠΈΡΡΠ»Π΅Π΄ΠΎΠ²Π°Π½ΠΈΡ) ΠΠ±ΠΎΡΠ½ΠΎΠ²Π°ΡΡ ΡΠ΅ΠΎΡΠ΅ΡΠΈΡΠ΅ΡΠΊΠΈ ΠΈ ΡΠΊΡΠΏΠ΅ΡΠΈΠΌΠ΅Π½ΡΠ°Π»ΡΠ½ΠΎ ΠΈΡΠΏΠΎΠ»ΡΠ·ΠΎΠ²Π°Π½ΠΈΠ΅ Π½Π° Π°Π²ΡΠΎΠΌΠΎΠ±ΠΈΠ»ΡΡ
ΠΈ ΡΡΠ°ΠΊΡΠΎΡΠ°Ρ
ΠΊΠΎΠΌΠ±ΠΈΠ½ΠΈΡΠΎΠ²Π°Π½Π½ΠΎΠΉ ΡΠΈΡΡΠ΅ΠΌΡ ΠΎΡ
Π»Π°ΠΆΠ΄Π΅Π½ΠΈΡ, ΡΠΎΠ΄Π΅ΡΠΆΠ°ΡΠ΅ΠΉ ΠΊΠ°ΠΊ Π°Π»ΡΠΌΠΈΠ½ΠΈΠ΅Π²ΡΠ΅, ΡΠ°ΠΊ ΠΈ ΠΏΠΎΠ»ΠΈΠΌΠ΅ΡΠ½ΡΠ΅ Π²ΠΎΠ΄ΡΠ½ΡΠ΅ ΡΠ°Π΄ΠΈΠ°ΡΠΎΡΡ ΠΈ Π°Π½Π°Π»ΠΎΠ³ΠΈΡΠ½ΠΎ ΠΆΠΈΠ΄ΠΊΠΎΡΡΠ½ΠΎ-ΠΌΠ°ΡΠ»ΡΠ½ΡΠ΅ ΡΠ΅ΠΏΠ»ΠΎΠΎΠ±ΠΌΠ΅Π½Π½ΠΈΠΊΠΈ, ΡΠΎΠ·Π΄Π°Π½Π½ΡΠ΅ Π½Π° ΠΎΡΠ½ΠΎΠ²Π΅ ΡΠΈΡΡΠ΅ΠΌΡ ΠΏΠ°ΡΠ°ΠΌΠ΅ΡΡΠΎΠ² Π΄Π»Ρ ΠΊΠΎΠΌΠΏΠ»Π΅ΠΊΡΠ½ΠΎΠΉ ΠΎΡΠ΅Π½ΠΊΠΈ Π°Π²ΡΠΎΡΡΠ°ΠΊΡΠΎΡΠ½ΡΡ
ΡΠ΅ΠΏΠ»ΠΎΠΎΠ±ΠΌΠ΅Π½Π½ΠΈΠΊΠΎΠ². (ΠΠ°ΡΠ΅ΡΠΈΠ°Π»Ρ ΠΈ ΠΌΠ΅ΡΠΎΠ΄Ρ) ΠΡΠΏΠΎΠ»Π½ΠΈΠ»ΠΈ ΡΡΠ΅Π½Π΄ΠΎΠ²ΡΠ΅ ΠΈΡΠΏΡΡΠ°Π½ΠΈΡ Ρ ΠΈΡΠΏΠΎΠ»ΡΠ·ΠΎΠ²Π°Π½ΠΈΠ΅ΠΌ ΡΠΏΠ΅ΡΠΈΠ°Π»ΡΠ½ΠΎΠΉ Π°ΡΡΠΎΠ΄ΠΈΠ½Π°ΠΌΠΈΡΠ΅ΡΠΊΠΎΠΉ ΡΡΡΠ±Ρ Π΄Π»Ρ ΠΈΡΡΠ»Π΅Π΄ΠΎΠ²Π°Π½ΠΈΡ ΡΠ΅ΠΏΠ»ΠΎΠ²ΡΡ
ΠΈ Π°ΡΡΠΎΠ΄ΠΈΠ½Π°ΠΌΠΈΡΠ΅ΡΠΊΠΈΡ
Ρ
Π°ΡΠ°ΠΊΡΠ΅ΡΠΈΡΡΠΈΠΊ ΠΎΠΏΡΡΠ½ΠΎΠ³ΠΎ ΠΎΠ±ΡΠ°Π·ΡΠ° ΡΡΠ°ΠΊΡΠΎΡΠ½ΠΎΠ³ΠΎ ΡΠ°Π΄ΠΈΠ°ΡΠΎΡΠ° Ρ ΠΏΠΎΠ»ΠΈΡΡΠ΅ΡΠ°Π½ΠΎΠ²ΠΎΠΉ ΡΠ΅ΡΠ΄ΡΠ΅Π²ΠΈΠ½ΠΎΠΉ. ΠΠΏΡΠ΅Π΄Π΅Π»ΠΈΠ»ΠΈ ΠΏΠΎΡΠ»Π΅ Π΄ΠΎΡΡΠΈΠΆΠ΅Π½ΠΈΠΈ ΡΡΡΠ°Π½ΠΎΠ²ΠΈΠ²ΡΠ΅Π³ΠΎΡΡ ΡΠ΅ΠΆΠΈΠΌΠ° ΡΠ°Π±ΠΎΡΡ ΡΡΡΠ°Π½ΠΎΠ²ΠΊΠΈ ΠΎΠΏΡΡΠ½ΡΠ΅ Π²Π΅Π»ΠΈΡΠΈΠ½Ρ ΠΏΠΎ ΠΊΠΎΠ½ΡΡΠΎΠ»ΡΠ½ΠΎ-ΠΈΠ·ΠΌΠ΅ΡΠΈΡΠ΅Π»ΡΠ½ΡΠΌ ΠΏΡΠΈΠ±ΠΎΡΠ°ΠΌ. (Π Π΅Π·ΡΠ»ΡΡΠ°ΡΡ ΠΈ ΠΎΠ±ΡΡΠΆΠ΄Π΅Π½ΠΈΠ΅) ΠΡΠΎΠ²Π΅Π»ΠΈ ΠΈΠ·ΠΌΠ΅ΡΠ΅Π½ΠΈΡ Π²ΡΠ΅Ρ
ΠΏΠ°ΡΠ°ΠΌΠ΅ΡΡΠΎΠ² ΠΎΠ±ΠΎΠΈΡ
ΡΠ΅ΠΏΠ»ΠΎΠ½ΠΎΡΠΈΡΠ΅Π»Π΅ΠΉ ΠΏΠΎΡΠ»Π΅Π΄ΠΎΠ²Π°ΡΠ΅Π»ΡΠ½ΠΎ Π½Π° ΠΊΠ°ΠΆΠ΄ΠΎΠΌ ΡΡΡΠ°Π½ΠΎΠ²ΠΈΠ²ΡΠ΅ΠΌΡΡ ΡΠ΅ΠΆΠΈΠΌΠ΅ ΡΠ°Π±ΠΎΡΡ ΡΡΠ΅Π½Π΄Π°. ΠΠΎΠ»ΡΡΠΈΠ»ΠΈ Π·Π°Π²ΠΈΡΠΈΠΌΠΎΡΡΠΈ ΠΎΡΠ½ΠΎΠ²Π½ΡΡ
ΠΏΠΎΠΊΠ°Π·Π°ΡΠ΅Π»Π΅ΠΉ (ΠΏΡΠΈΠ²Π΅Π΄Π΅Π½Π½Π°Ρ ΡΠ΅ΠΏΠ»ΠΎΠΎΡΠ΄Π°ΡΠ°, Π°ΡΡΠΎΠ΄ΠΈΠ½Π°ΠΌΠΈΡΠ΅ΡΠΊΠΎΠ΅ ΠΈ Π³ΠΈΠ΄ΡΠ°Π²Π»ΠΈΡΠ΅ΡΠΊΠΎΠ΅ ΡΠΎΠΏΡΠΎΡΠΈΠ²Π»Π΅Π½ΠΈΡ) ΡΠ°Π±ΠΎΡΡ ΡΠ΅ΠΏΠ»ΠΎΠΎΠ±ΠΌΠ΅Π½Π½ΠΈΠΊΠ°, ΠΏΡΠΈΠ±Π»ΠΈΠΆΠ΅Π½Π½ΡΠ΅ ΠΊ ΡΡΠ»ΠΎΠ²ΠΈΡΠΌ ΡΠΊΡΠΏΠ»ΡΠ°ΡΠ°ΡΠΈΠΈ ΡΡΠ°Π½ΡΠΏΠΎΡΡΠ½ΡΡ
ΡΡΠ΅Π΄ΡΡΠ². (ΠΡΠ²ΠΎΠ΄Ρ) ΠΠΏΡΡΠ½ΡΠΉ ΠΎΠ±ΡΠ°Π·Π΅Ρ ΡΠ°Π΄ΠΈΠ°ΡΠΎΡΠ° ΠΠ’Π-80 Ρ ΠΏΠΎΠ»ΠΈΡΡΠ΅ΡΠ°Π½ΠΎΠ²ΠΎΠΉ ΡΠ΅ΡΠ΄ΡΠ΅Π²ΠΈΠ½ΠΎΠΉ ΠΈΠΌΠ΅Π΅Ρ Π±ΠΎΠ»ΡΡΠΈΠ΅ ΠΏΠ΅ΡΡΠΏΠ΅ΠΊΡΠΈΠ²Ρ Π² ΠΊΠ°ΡΠ΅ΡΡΠ²Π΅ Π°Π»ΡΡΠ΅ΡΠ½Π°ΡΠΈΠ²Π½ΠΎΠ³ΠΎ ΡΠ°Π΄ΠΈΠ°ΡΠΎΡΠ° Π±ΡΠ΄ΡΡΠ΅Π³ΠΎ. ΠΠΎΠ²ΡΡΠ΅Π½ΠΈΠ΅ ΡΠ΅ΠΏΠ»ΠΎΠΎΡΠ΄Π°ΡΠΈ ΡΠ°Π΄ΠΈΠ°ΡΠΎΡΠ° Π½Π° 10-15 ΠΏΡΠΎΡΠ΅Π½ΡΠΎΠ² Π²ΠΎΠ·ΠΌΠΎΠΆΠ½ΠΎ ΠΏΡΠΈ ΠΏΠΎΠΌΠΎΡΠΈ ΠΈΡΠΏΠΎΠ»ΡΠ·ΠΎΠ²Π°Π½ΠΈΡ Π°Π»ΡΠΌΠΈΠ½ΠΈΠ΅Π²ΠΎΠ³ΠΎ ΠΎΡΠ΅Π±ΡΠ΅Π½ΠΈΡ Π½Π° ΠΏΠΎΠ²Π΅ΡΡ
Π½ΠΎΡΡΠΈ ΠΏΠΎΠ»ΠΈΡΡΠ΅ΡΠ°Π½ΠΎΠ²ΠΎΠΉ ΠΏΠ»Π°ΡΡΠΈΠ½Ρ. Π‘Π½ΠΈΠΆΠ΅Π½ΠΈΠ΅ Π³ΠΈΠ΄ΡΠΎΠ΄ΠΈΠ½Π°ΠΌΠΈΡΠ΅ΡΠΊΠΎΠ³ΠΎ ΡΠΎΠΏΡΠΎΡΠΈΠ²Π»Π΅Π½ΠΈΡ Π½Π° 15-20 ΠΏΡΠΎΡΠ΅Π½ΡΠΎΠ² Π΄ΠΎΡΡΠΈΠ³Π°Π΅ΡΡΡ Π·Π° ΡΡΠ΅Ρ ΡΠ²Π΅Π»ΠΈΡΠ΅Π½ΠΈΡ Π΄ΠΈΠ°ΠΌΠ΅ΡΡΠ° ΠΏΡΠΎΠΏΡΡΠΊΠ½ΠΎΠΉ ΡΠΏΠΎΡΠΎΠ±Π½ΠΎΡΡΠΈ ΠΊΠ°ΠΏΠΈΠ»Π»ΡΡΠΎΠ² Π² ΠΏΠΎΠ»ΠΈΡΡΠ΅ΡΠ°Π½ΠΎΠ²ΠΎΠΉ ΠΏΠ»Π°ΡΡΠΈΠ½Π΅ ΠΈ ΠΊΠΎΠ»ΠΈΡΠ΅ΡΡΠ²Π° ΡΠ°ΠΌΠΈΡ
ΠΏΠ»Π°ΡΡΠΈΠ½ Π² ΡΠΎΡΠ΅ ΡΠ°Π΄ΠΈΠ°ΡΠΎΡΠ°
ΠΠ΅ΡΠΎΠ΄ΠΈΠΊΠ° ΡΠ°ΡΡΠ΅ΡΠ° ΠΌΠ°ΡΠ»ΡΠ½ΡΡ ΡΠ°Π΄ΠΈΠ°ΡΠΎΡΠΎΠ² Π°Π²ΡΠΎΡΡΠ°ΠΊΡΠΎΡΠ½ΠΎΠΉ ΡΠ΅Ρ Π½ΠΈΠΊΠΈ
The paper highlights the relevance of the problem of determining the amount of heat supplied by an internal combustion engine to a liquid cooling system when creating typical series of unified heat exchangers for tractor and combine engines (power units). A properly designed cooling system further guarantees the maintenance of the optimal thermal mode for the engine operation. A methodology for calculating the coolant characteristics of the cooling system was proposed in order to prevent possible problems related to increased parts wear, early loss of oil lubricating properties, the engine (individual units) and rubbing parts overheating, a decrease in engine power and a deterioration in the quality of the fuel-air mixture entering the cylinders.Research purpose To develop a methodology for calculating the amount of heat to be dissipated by the oil radiators of a liquid cooling system (lubrication system) being exposed to various load and engine speed modes.Materials and methods It was proposed to determine the amount of heat to be dissipated by the liquid-oil heat exchanger of the engine lube oil cooling system.Results and discussion The calculation method for oil radiators presents the calculation of the heat obtained by oil during the operation of 37-110 kilowatts automotive engines. The heat-dissipating ability of the oil surface is determined. A parameter taking into account the oil radiator heat flow is identified. The graphs of the oil surface and heat flux dependence on the engine power are presented.Conclusions The method for calculating the temperature and dynamic characteristics of the automotive engine cooling system has been developed. It makes it possible to carry out research on the radiator thermal and technical characteristics in various operating modes of machines and coolants of systems, various heat exchanger structural materials (metal, polymer), with an error of 1.5-8.0 percent.ΠΠΎΠΊΠ°Π·Π°Π»ΠΈ Π°ΠΊΡΡΠ°Π»ΡΠ½ΠΎΡΡΡ ΠΏΡΠΎΠ±Π»Π΅ΠΌΡ ΠΎΠΏΡΠ΅Π΄Π΅Π»Π΅Π½ΠΈΡ ΠΊΠΎΠ»ΠΈΡΠ΅ΡΡΠ²Π° ΡΠ΅ΠΏΠ»ΠΎΡΡ, ΠΎΡΠ΄Π°Π²Π°Π΅ΠΌΠΎΠΉ Π΄Π²ΠΈΠ³Π°ΡΠ΅Π»Π΅ΠΌ Π²Π½ΡΡΡΠ΅Π½Π½Π΅Π³ΠΎ ΡΠ³ΠΎΡΠ°Π½ΠΈΡ Π² ΠΆΠΈΠ΄ΠΊΠΎΡΡΠ½ΡΡ ΡΠΈΡΡΠ΅ΠΌΡ ΠΎΡ
Π»Π°ΠΆΠ΄Π΅Π½ΠΈΡ ΠΏΡΠΈ ΡΠΎΠ·Π΄Π°Π½ΠΈΠΈ ΡΠΈΠΏΠΎΡΠ°Π·ΠΌΠ΅ΡΠ½ΡΡ
ΡΡΠ΄ΠΎΠ² ΡΠ½ΠΈΡΠΈΡΠΈΡΠΎΠ²Π°Π½Π½ΡΡ
ΡΠ΅ΠΏΠ»ΠΎΠΎΠ±ΠΌΠ΅Π½Π½ΠΈΠΊΠΎΠ² ΡΡΠ°ΠΊΡΠΎΡΠ½ΡΡ
ΠΈ ΠΊΠΎΠΌΠ±Π°ΠΉΠ½ΠΎΠ²ΡΡ
Π΄Π²ΠΈΠ³Π°ΡΠ΅Π»Π΅ΠΉ (ΡΠΈΠ»ΠΎΠ²ΡΡ
Π°Π³ΡΠ΅Π³Π°ΡΠΎΠ²). ΠΡΠΌΠ΅ΡΠΈΠ»ΠΈ, ΡΡΠΎ ΠΏΡΠ°Π²ΠΈΠ»ΡΠ½ΠΎ ΡΠΏΡΠΎΠ΅ΠΊΡΠΈΡΠΎΠ²Π°Π½Π½Π°Ρ ΡΠΈΡΡΠ΅ΠΌΠ° ΠΎΡ
Π»Π°ΠΆΠ΄Π΅Π½ΠΈΡ Π² Π΄Π°Π»ΡΠ½Π΅ΠΉΡΠ΅ΠΌ Π³Π°ΡΠ°Π½ΡΠΈΡΡΠ΅Ρ ΠΏΠΎΠ΄Π΄Π΅ΡΠΆΠ°Π½ΠΈΠ΅ ΠΎΠΏΡΠΈΠΌΠ°Π»ΡΠ½ΠΎΠ³ΠΎ ΡΠ΅ΠΏΠ»ΠΎΠ²ΠΎΠ³ΠΎ ΡΠ΅ΠΆΠΈΠΌΠ° ΡΠ°Π±ΠΎΡΡ Π΄Π²ΠΈΠ³Π°ΡΠ΅Π»Ρ. ΠΡΠ΅Π΄Π»ΠΎΠΆΠΈΠ»ΠΈ ΠΌΠ΅Π΄ΠΎΠ΄ΠΈΠΊΡ ΡΠ°ΡΡΠ΅ΡΠ° ΡΠ΅ΠΏΠ»ΠΎΠ½ΠΎΡΠ½ΡΡ
Ρ
Π°ΡΠ°ΠΊΡΠ΅ΡΠΈΡΡΠΈΠΊ ΡΠΈΡΡΠ΅ΠΌΡ ΠΎΡ
Π»Π°ΠΆΠ΄Π΅Π½ΠΈΡ Π΄Π»Ρ Π·Π°Π±Π»Π°Π³ΠΎΠ²ΡΠ΅ΠΌΠ΅Π½Π½ΠΎΠ³ΠΎ ΠΈΡΠΊΠ»ΡΡΠ΅Π½ΠΈΡ Π²ΠΎΠ·ΠΌΠΎΠΆΠ½ΡΡ
ΠΏΡΠΎΠ±Π»Π΅ΠΌ, ΡΠ²ΡΠ·Π°Π½Π½ΡΡ
Ρ ΠΏΠΎΠ²ΡΡΠ΅Π½Π½ΡΠΌ ΠΈΠ·Π½ΠΎΡΠΎΠΌ Π΄Π΅ΡΠ°Π»Π΅ΠΉ, ΠΏΡΠ΅ΠΆΠ΄Π΅Π²ΡΠ΅ΠΌΠ΅Π½Π½ΠΎΠΉ ΠΏΠΎΡΠ΅ΡΠ΅ΠΉ ΠΌΠ°ΡΠ»ΠΎΠΌ ΡΠΌΠ°Π·ΡΠ²Π°ΡΡΠΈΡ
ΡΠ²ΠΎΠΉΡΡΠ², ΠΏΠ΅ΡΠ΅Π³ΡΠ΅Π²ΠΎΠΌ Π΄Π²ΠΈΠ³Π°ΡΠ΅Π»Ρ (ΠΎΡΠ΄Π΅Π»ΡΠ½ΡΡ
Π°Π³ΡΠ΅Π³Π°ΡΠΎΠ²) ΠΈ ΡΡΡΡΠΈΡ
ΡΡ Π΄Π΅ΡΠ°Π»Π΅ΠΉ, ΡΠ½ΠΈΠΆΠ΅Π½ΠΈΠ΅ΠΌ ΠΌΠΎΡΠ½ΠΎΡΡΠΈ Π΄Π²ΠΈΠ³Π°ΡΠ΅Π»Ρ ΠΈ ΡΡ
ΡΠ΄ΡΠ΅Π½ΠΈΠ΅ΠΌ ΠΊΠ°ΡΠ΅ΡΡΠ²Π° ΡΠΎΠΏΠ»ΠΈΠ²ΠΎ-Π²ΠΎΠ·Π΄ΡΡΠ½ΠΎΠΉ ΡΠΌΠ΅ΡΠΈ, ΠΏΠΎΡΡΡΠΏΠ°ΡΡΠ΅ΠΉ Π² ΡΠΈΠ»ΠΈΠ½Π΄ΡΡ.Π¦Π΅Π»Ρ ΠΈΡΡΠ»Π΅Π΄ΠΎΠ²Π°Π½ΠΈΡ Π Π°Π·ΡΠ°Π±ΠΎΡΠ°ΡΡ ΠΌΠ΅ΡΠΎΠ΄ΠΈΠΊΡ ΡΠ°ΡΡΠ΅ΡΠ° ΠΊΠΎΠ»ΠΈΡΠ΅ΡΡΠ²Π° ΡΠ΅ΠΏΠ»ΠΎΡΡ, ΠΊΠΎΡΠΎΡΠΎΠ΅ Π΄ΠΎΠ»ΠΆΠ½ΠΎ Π±ΡΡΡ ΡΠ°ΡΡΠ΅ΡΠ½ΠΎ ΠΌΠ°ΡΠ»ΡΠ½ΡΠΌΠΈ ΡΠ°Π΄ΠΈΠ°ΡΠΎΡΠ°ΠΌΠΈ ΠΆΠΈΠ΄ΠΊΠΎΡΡΠ½ΠΎΠΉ ΡΠΈΡΡΠ΅ΠΌΡ ΠΎΡ
Π»Π°ΠΆΠ΄Π΅Π½ΠΈΡ (ΡΠΈΡΡΠ΅ΠΌΡ ΡΠΌΠ°Π·ΠΊΠΈ) ΠΏΡΠΈ ΡΠ°Π·Π»ΠΈΡΠ½ΡΡ
Π½Π°Π³ΡΡΠ·ΠΎΡΠ½ΡΡ
ΠΈ ΡΠΊΠΎΡΠΎΡΡΠ½ΡΡ
ΡΠ΅ΠΆΠΈΠΌΠ°Ρ
ΡΠ°Π±ΠΎΡΡ Π΄Π²ΠΈΠ³Π°ΡΠ΅Π»Ρ.ΠΠ°ΡΠ΅ΡΠΈΠ°Π»Ρ ΠΈ ΠΌΠ΅ΡΠΎΠ΄Ρ ΠΡΠ΅Π΄Π»ΠΎΠΆΠΈΠ»ΠΈ ΠΎΠΏΡΠ΅Π΄Π΅Π»ΠΈΡΡ ΠΊΠΎΠ»ΠΈΡΠ΅ΡΡΠ²ΠΎ ΡΠ΅ΠΏΠ»ΠΎΡΡ, ΠΊΠΎΡΠΎΡΠΎΠ΅ Π΄ΠΎΠ»ΠΆΠ½ΠΎ Π±ΡΡΡ ΡΠ°ΡΡΠ΅ΡΠ½ΠΎ ΠΆΠΈΠ΄ΠΊΠΎΡΡΠ½ΠΎ-ΠΌΠ°ΡΠ»ΡΠ½ΡΠΌ ΡΠ΅ΠΏΠ»ΠΎΠΎΠ±ΠΌΠ΅Π½Π½ΠΈΠΊΠΎΠΌ ΡΠΈΡΡΠ΅ΠΌΡ ΠΎΡ
Π»Π°ΠΆΠ΄Π΅Π½ΠΈΡ ΡΠΌΠ°Π·ΠΎΡΠ½ΠΎΠ³ΠΎ ΠΌΠ°ΡΠ»Π° Π΄Π²ΠΈΠ³Π°ΡΠ΅Π»Ρ.Π Π΅Π·ΡΠ»ΡΡΠ°ΡΡ ΠΈ ΠΎΠ±ΡΡΠΆΠ΄Π΅Π½ΠΈΠ΅ Π ΠΌΠ΅ΡΠΎΠ΄ΠΈΠΊΠ΅ ΡΠ°ΡΡΠ΅ΡΠ° ΠΌΠ°ΡΠ»ΡΠ½ΡΡ
ΡΠ°Π΄ΠΈΠ°ΡΠΎΡΠΎΠ² ΠΏΡΠ΅Π΄ΡΡΠ°Π²ΠΈΠ»ΠΈ ΡΠ°ΡΡΠ΅Ρ ΡΠ΅ΠΏΠ»Π°, ΠΏΠΎΠ»ΡΡΠ΅Π½Π½ΠΎΠ³ΠΎ ΠΌΠ°ΡΠ»ΠΎΠΌ Π² ΠΏΡΠΎΡΠ΅ΡΡΠ΅ ΡΠ°Π±ΠΎΡΡ Π°Π²ΡΠΎΡΡΠ°ΠΊΡΠΎΡΠ½ΡΡ
Π΄Π²ΠΈΠ³Π°ΡΠ΅Π»Π΅ΠΉ ΠΌΠΎΡΠ½ΠΎΡΡΡΡ 37-110 ΠΊΠΈΠ»ΠΎΠ²Π°ΡΡ. ΠΠΏΡΠ΅Π΄Π΅Π»ΠΈΠ»ΠΈ ΡΠ΅ΠΏΠ»ΠΎΡΠ°ΡΡΠ΅ΠΈΠ²Π°ΡΡΡΡ ΡΠΏΠΎΡΠΎΠ±Π½ΠΎΡΡΡ ΠΌΠ°ΡΠ»ΡΠ½ΠΎΠΉ ΠΏΠΎΠ²Π΅ΡΡ
Π½ΠΎΡΡΠΈ. ΠΡΡΠ²ΠΈΠ»ΠΈ ΠΏΠ°ΡΠ°ΠΌΠ΅ΡΡ, ΡΡΠΈΡΡΠ²Π°ΡΡΠΈΠΉ ΡΠ΅ΠΏΠ»ΠΎΠ²ΠΎΠΉ ΠΏΠΎΡΠΎΠΊ ΠΌΠ°ΡΠ»ΡΠ½ΡΡ
ΡΠ°Π΄ΠΈΠ°ΡΠΎΡΠΎΠ². ΠΡΠ΅Π΄ΡΡΠ°Π²ΠΈΠ»ΠΈ Π³ΡΠ°ΡΠΈΠΊΠΈ Π·Π°Π²ΠΈΡΠΈΠΌΠΎΡΡΠΈ ΠΌΠ°ΡΠ»ΡΠ½ΠΎΠΉ ΠΏΠΎΠ²Π΅ΡΡ
Π½ΠΎΡΡΠΈ ΠΈ ΡΠ΅ΠΏΠ»ΠΎΠ²ΠΎΠ³ΠΎ ΠΏΠΎΡΠΎΠΊΠ° ΠΎΡ ΠΌΠΎΡΠ½ΠΎΡΡΠΈ Π΄Π²ΠΈΠ³Π°ΡΠ΅Π»Ρ.ΠΡΠ²ΠΎΠ΄Ρ Π Π°Π·ΡΠ°Π±ΠΎΡΠ°Π»ΠΈ ΠΌΠ΅ΡΠΎΠ΄ΠΈΠΊΡ ΡΠ°ΡΡΠ΅ΡΠ° ΠΏΠΎΠΊΠ°Π·Π°ΡΠ΅Π»Π΅ΠΉ ΡΠ΅ΠΌΠΏΠ΅ΡΠ°ΡΡΡΠ½ΠΎ-Π΄ΠΈΠ½Π°ΠΌΠΈΡΠ΅ΡΠΊΠΈΡ
Ρ
Π°ΡΠ°ΠΊΡΠ΅ΡΠΈΡΡΠΈΠΊ ΠΎΡ
Π»Π°ΠΆΠ΄Π°ΡΡΠ΅ΠΉ ΡΠΈΡΡΠ΅ΠΌΡ Π°Π²ΡΠΎΡΡΠ°ΠΊΡΠΎΡΠ½ΡΡ
Π΄Π²ΠΈΠ³Π°ΡΠ΅Π»Π΅ΠΉ, ΠΊΠΎΡΠΎΡΠ°Ρ ΠΏΠΎΠ·Π²ΠΎΠ»ΡΠ΅Ρ ΠΏΡΠΎΠ²ΠΎΠ΄ΠΈΡΡ ΠΈΡΡΠ»Π΅Π΄ΠΎΠ²Π°Π½ΠΈΡ ΠΏΠΎ ΡΠ΅ΠΏΠ»ΠΎΡΠ΅Ρ
Π½ΠΈΡΠ΅ΡΠΊΠΈΠΌ ΠΏΠΎΠΊΠ°Π·Π°ΡΠ΅Π»ΡΠΌ ΡΠ°Π΄ΠΈΠ°ΡΠΎΡΠΎΠ² Π½Π° ΡΠ°Π·Π»ΠΈΡΠ½ΡΡ
ΡΠ΅ΠΆΠΈΠΌΠ°Ρ
ΡΠ°Π±ΠΎΡΡ ΠΌΠ°ΡΠΈΠ½ ΠΈ ΡΠ΅ΠΏΠ»ΠΎΠ½ΠΎΡΠΈΡΠ΅Π»ΡΡ
ΡΠΈΡΡΠ΅ΠΌ, ΠΊΠΎΠ½ΡΡΡΡΠΊΡΠΈΠΎΠ½Π½ΡΡ
ΠΌΠ°ΡΠ΅ΡΠΈΠ°Π»Π°Ρ
(ΠΌΠ΅ΡΠ°Π»Π», ΠΏΠΎΠ»ΠΈΠΌΠ΅Ρ) ΡΠ΅ΠΏΠ»ΠΎΠΎΠ±ΠΌΠ΅Π½Π½ΠΈΠΊΠΎΠ² Ρ ΡΡΠ΅ΡΠΎΠΌ ΡΠ°ΠΊΡΠΎΡΠΎΠ² ΠΈ ΡΠ΅ΠΆΠΈΠΌΠΎΠ² ΡΠ°Π±ΠΎΡΡ Ρ ΠΏΠΎΠ³ΡΠ΅ΡΠ½ΠΎΡΡΡΡ 1,5-8,0 ΠΏΡΠΎΡΠ΅Π½ΡΠΎΠ²
Test Results of a Polymer Radiator of MTZ-80 Tractor Cooling System
Global car manufacturers wish to increase the number of manufactured products, reduce their cost and labor input. The choice of research areas, design and technological developments in radiator construction is an extremely important and urgent task, due to the mass production of radiators for tractors and automobiles on the one hand, and the favorable development prospects of these interrelated industries, on the other. (Research purpose) To substantiate theoretically and experimentally the use of a combined cooling system containing both aluminum and polymeric water radiators and similarly liquid-oil heat exchangers based on the four principles listed above on automobiles and tractors. (Materials and methods) The authors performed bench tests using a special wind tunnel to study the thermal and aerodynamic characteristics of a prototype tractor radiator with a polyurethane core. After reaching the steady-state operating mode of the installation, the experimental values were determined for the control and measuring instruments. (Results and discussion) The authors carried out measurements of all parameters of both coolants in series at each steady-state operating mode of the bench. They obtained the main indicators dependences (reduced heat transfer, aerodynamic and hydraulic drag) of the heat exchanger, close to the operating conditions of the vehicles. (Conclusions) A prototype MTZ-80 radiator with a polyurethane core has great prospects as a future alternative radiator. An increase by 10-15 percent in the radiator heat transfer is possible by using aluminum fi ns on the surface of the polyurethane plate. A 15-20 percent reduction in hydrodynamic resistance is achieved by increasing the diameter of the capillary throughput in a polyurethane plate and the number of plates themselves in the radiator cell
ΠΠ½Π°Π½ΠΈΠ΅ ΠΈΠ½ΠΎΡΡΡΠ°Π½Π½ΠΎΠ³ΠΎ ΡΠ·ΡΠΊΠ° ΠΊΠ°ΠΊ ΠΎΡΠ½ΠΎΠ²Π½ΠΎΠΉ ΡΠ°ΠΊΡΠΎΡ Π΄Π»Ρ ΡΠ°Π±ΠΎΡΡ Π² ΠΈΠ½Π½ΠΎΠ²Π°ΡΠΈΠΎΠ½Π½ΡΡ ΡΡΠ»ΠΎΠ²ΠΈΡΡ
Π ΡΠ±ΠΎΡΠ½ΠΈΠΊ Π²ΠΊΠ»ΡΡΠ΅Π½Ρ ΠΌΠ°ΡΠ΅ΡΠΈΠ°Π»Ρ Π΄ΠΎΠΊΠ»Π°Π΄ΠΎΠ² 80-ΠΉ ΡΡΡΠ΄Π΅Π½ΡΠ΅ΠΊΠΎΠΉ Π½Π°ΡΡΠ½ΠΎ-ΡΠ΅Ρ
Π½ΠΈΡΠ΅ΡΠΊΠΎΠΉ ΠΊΠΎΠ½ΡΠ΅ΡΠ΅Π½ΡΠΈΠΈ Β«ΠΠ½Π°Π½ΠΈΠ΅ ΠΈΠ½ΠΎΡΡΡΠ°Π½Π½ΠΎΠ³ΠΎ ΡΠ·ΡΠΊΠ° ΠΊΠ°ΠΊ ΠΎΡΠ½ΠΎΠ²Π½ΠΎΠΉ ΡΠ°ΠΊΡΠΎΡ Π΄Π»Ρ ΡΠ°Π±ΠΎΡΡ Π² ΠΈΠ½Π½ΠΎΠ²Π°ΡΠΈΠΎΠ½Π½ΡΡ
ΡΡΠ»ΠΎΠ²ΠΈΡΡ
Β» ΠΏΠΎ ΠΊΠ°ΡΠ΅Π΄ΡΠ΅ Β«ΠΠ½Π³Π»ΠΈΠΉΡΠΊΠΈΠΉ ΡΠ·ΡΠΊ β1Β» ΡΠ°ΠΊΡΠ»ΡΡΠ΅ΡΠ° Π³ΠΎΡΠ½ΠΎΠ³ΠΎ Π΄Π΅Π»Π° ΠΈ ΠΈΠ½ΠΆΠ΅Π½Π΅ΡΠ½ΠΎΠΉ ΡΠΊΠΎΠ»ΠΎΠ³ΠΈΠΈ
Theoretical and experimental investigation of a CDI injection system operating on neat rapeseed oil - feasibility and operational studies
This thesis presents the work done within the PhD research project focusing on the utilisation
of plant oils in Common Rail (CR) diesel engines. The work scope included
fundamental experimental studies of rapeseed oil (RSO) in comparison to diesel fuel,
the feasibility analysis of diesel substitution with various plant oils, the definition and
implementation of modifications of a common rail injection system and future work recommendations
of possible changes to the injection system.
It was recognised that neat plant oils can be considered as an alternative substitute
for diesel fuel offering a natural way to balance the CO2 emissions. However, due to the
differences between diesel and plant oils, such as density, viscosity and surface tension,
the direct application of plant oils in common rail diesel engines could cause degradation
of the injection process and in turn adversely affect the diesel engineβs performance. RSO
was chosen to perform the spray characterisation studies at various injection pressures and
oil temperatures under conditions similar to the operation of the common rail engine. High
speed camera, Phase Doppler Anemometry and Malvern laser techniques were used to
study spray penetration length and cone angle of RSO in comparison to diesel. To study
the internal flow inside the CR injector the acoustic emission technique was applied.
It was found that for oil temperatures below 40Β°C the RSO viscosity, density and
surface tension are higher in comparison to diesel, therefore at injection pressures around
37.50 MPa the RSO spray is not fully developed. The spray penetration and cone angle at
these spray conditions exhibit significant spray deterioration.
In addition to the lab experiments, KIVA code simulated RSO sprays under CR conditions.
The KH-RT and RD breakup models were successfully applied to simulate the
non-evaporating sprays corresponding to the experimental spray tests and finally to predict
i
real in-cylinder injection conditions. Numerical results showed acceptable agreement with
the experimental data of RSO penetration.
Based on experimental and numerical results it was concluded that elevated temperature
and injection pressure could be the efficient measures to overcome operational obstacles
when using RSO in the CR diesel engine. A series of modifications of low- and highpressure
loops was performed and experimentally assessed throughout the engine tests.
The results revealed that the modifications allowed to run the engine at the power and
emission outputs very close to diesel operation. However, more fundamental changes were
suggested as future work to ensure efficient and trouble-free long-term operation. It is
believed that these changed should be applied to meet Euro IV and V requirements