9,805 research outputs found

    An approach based on tunicate swarm algorithm to solve partitional clustering problem

    Get PDF
    The tunicate swarm algorithm (TSA) is a newly proposed population-based swarm optimizer for solving global optimization problems. TSA uses best solution in the population in order improve the intensification and diversification of the tunicates. Thus, the possibility of finding a better position for search agents has increased. The aim of the clustering algorithms is to distributed the data instances into some groups according to similar and dissimilar features of instances. Therefore, with a proper clustering algorithm the dataset will be separated to some groups and it’s expected that the similarities of groups will be minimum. In this work, firstly, an approach based on TSA has proposed for solving partitional clustering problem. Then, the TSA is implemented on ten different clustering problems taken from UCI Machine Learning Repository, and the clustering performance of the TSA is compared with the performances of the three well known clustering algorithms such as fuzzy c-means, k-means and k-medoids. The experimental results and comparisons show that the TSA based approach is highly competitive and robust optimizer for solving the partitional clustering problems

    Performance Analysis of Tree Seed Algorithm for Small Dimension Optimization Functions

    Get PDF
    Tree-Seed Algorithm (TSA) simulates the growth of trees and seeds on a land. TSA is a method proposed to solve continuous optimization problems. Trees and seeds indicate possible solutions in the search space for optimization problems. Trees are planted in the ground at the beginning of the search and each tree produces several seeds during iterations. While the trees were selected randomly during seed formation, the tournament selection method was used and also hybridized by adding the C parameter, which is the acceleration coefficient calculated according to the size of the problem. In this study, continuous optimization problem has been solved by the hybrid method. First, the performance analyses of the five best known numerical benchmark functions have been done, in both TSA and hybrid method TSA with 2, 3, 4 and 5 dimensions, and 10-50 population numbers. After that, well-known algorithms in the literature like Particle Swarm Optimization (PSO), TSA, Artificial Bee Colony (ABC), Harmony Search (HS), as well as hybrid method TSA (HTSA) have been applied to twenty-four numerical benchmark functions and the performance analyses of algorithms have been done. Hopeful and comparable conclusions based on solution quality and robustness can be obtained with the hybrid method

    On the Benefit of Merging Suffix Array Intervals for Parallel Pattern Matching

    Get PDF
    We present parallel algorithms for exact and approximate pattern matching with suffix arrays, using a CREW-PRAM with pp processors. Given a static text of length nn, we first show how to compute the suffix array interval of a given pattern of length mm in O(mp+lgp+lglgplglgn)O(\frac{m}{p}+ \lg p + \lg\lg p\cdot\lg\lg n) time for pmp \le m. For approximate pattern matching with kk differences or mismatches, we show how to compute all occurrences of a given pattern in O(mkσkpmax(k,lglgn) ⁣+ ⁣(1+mp)lgplglgn+occ)O(\frac{m^k\sigma^k}{p}\max\left(k,\lg\lg n\right)\!+\!(1+\frac{m}{p}) \lg p\cdot \lg\lg n + \text{occ}) time, where σ\sigma is the size of the alphabet and pσkmkp \le \sigma^k m^k. The workhorse of our algorithms is a data structure for merging suffix array intervals quickly: Given the suffix array intervals for two patterns PP and PP', we present a data structure for computing the interval of PPPP' in O(lglgn)O(\lg\lg n) sequential time, or in O(1+lgplgn)O(1+\lg_p\lg n) parallel time. All our data structures are of size O(n)O(n) bits (in addition to the suffix array)

    Temporal Stream Algebra

    Get PDF
    Data stream management systems (DSMS) so far focus on event queries and hardly consider combined queries to both data from event streams and from a database. However, applications like emergency management require combined data stream and database queries. Further requirements are the simultaneous use of multiple timestamps after different time lines and semantics, expressive temporal relations between multiple time-stamps and exible negation, grouping and aggregation which can be controlled, i. e. started and stopped, by events and are not limited to fixed-size time windows. Current DSMS hardly address these requirements. This article proposes Temporal Stream Algebra (TSA) so as to meet the afore mentioned requirements. Temporal streams are a common abstraction of data streams and data- base relations; the operators of TSA are generalizations of the usual operators of Relational Algebra. A in-depth 'analysis of temporal relations guarantees that valid TSA expressions are non-blocking, i. e. can be evaluated incrementally. In this respect TSA differs significantly from previous algebraic approaches which use specialized operators to prevent blocking expressions on a "syntactical" level
    corecore