12,366 research outputs found

    Diffusion MR Characteristics Following Concurrent Radiochemotherapy Predicts Progression-Free and Overall Survival in Newly Diagnosed Glioblastoma.

    Get PDF
    The standard of care for newly diagnosed glioblastoma (GBM) is surgery, then radiotherapy (RT) with concurrent temozolomide (TMZ), followed by adjuvant TMZ. We hypothesized patients with low diffusivity measured using apparent diffusion coefficient (ADC) histogram analysis evaluated after RT+TMZ, prior to adjuvant TMZ, would have a significantly shorter progression-free (PFS) and overall survival (OS). To test this hypothesis we evaluated 120 patients with newly diagnosed GBM receiving RT+TMZ followed by adjuvant TMZ. MRI was performed after completion of RT+TMZ, prior to initiation of adjuvant TMZ. A double Gaussian mixed model was used to describe the ADC histograms within the enhancing tumor, where ADCL and ADCH were defined as the mean ADC value of the lower and higher Gaussian distribution, respectively. An ADCL value of 1.0 um2/ms and ADCH value of 1.6 um2/ms were used to stratify patients into high and low risk categories. Results suggest patients with low ADCL had significantly shorter PFS (Cox Hazard Ratio = 0.12, P = 0.0006). OS was significantly shorter with low ADCL tumors, showing a median OS of 407 vs. 644 days (Cox Hazard Ratio = 0.31, P = 0.047). ADCH was not predictive of PFS or OS when accounting for age and ADCL. In summary, newly diagnosed glioblastoma patients with low ADCL after completion of RT+TMZ are likely to progress and die earlier than patients with higher ADCL. Results suggest ADC histogram analysis may be useful for patient risk stratification following completion of RT+TMZ

    Bone morphogenetic protein 7 sensitizes O6-methylguanine methyltransferase expressing-glioblastoma stem cells to clinically relevant dose of temozolomide.

    Get PDF
    BackgroundTemozolomide (TMZ) is an oral DNA-alkylating agent used for treating patients with glioblastoma. However, therapeutic benefits of TMZ can be compromised by the expression of O6-methylguanine methyltransferase (MGMT) in tumor tissue. Here we used MGMT-expressing glioblastoma stem cells (GSC) lines as a model for investigating the molecular mechanism underlying TMZ resistance, while aiming to explore a new treatment strategy designed to possibly overcome resistance to the clinically relevant dose of TMZ (35 Î¼M).MethodsMGMT-expressing GSC cultures are resistant to TMZ, and IC50 (half maximal inhibitory concentration) is estimated at around 500 Î¼M. Clonogenic GSC surviving 500 Î¼M TMZ (GSC-500 Î¼M TMZ), were isolated. Molecular signatures were identified via comparative analysis of expression microarray against parental GSC (GSC-parental). The recombinant protein of top downregulated signature was used as a single agent or in combination with TMZ, for evaluating therapeutic effects of treatment of GSC.ResultsThe molecular signatures characterized an activation of protective stress responses in GSC-500 Î¼M TMZ, mainly including biotransformation/detoxification of xenobiotics, blocked endoplasmic reticulum stress-mediated apoptosis, epithelial-to-mesenchymal transition (EMT), and inhibited growth/differentiation. Bone morphogenetic protein 7 (BMP7) was identified as the top down-regulated gene in GSC-500 Î¼M TMZ. Although augmenting BMP7 signaling in GSC by exogenous BMP7 treatment did not effectively stop GSC growth, it markedly sensitized both GSC-500 Î¼M TMZ and GSC-parental to 35 Î¼M TMZ treatment, leading to loss of self-renewal and migration capacity. BMP7 treatment induced senescence of GSC cultures and suppressed mRNA expression of CD133, MGMT, and ATP-binding cassette drug efflux transporters (ABCB1, ABCG2), as well as reconfigured transcriptional profiles in GSC by downregulating genes associated with EMT/migration/invasion, stemness, inflammation/immune response, and cell proliferation/tumorigenesis. BMP7 treatment significantly prolonged survival time of animals intracranially inoculated with GSC when compared to those untreated or treated with TMZ alone (p = 0.0017), whereas combination of two agents further extended animal survival compared to BMP7 alone (p = 0.0489).ConclusionsThese data support the view that reduced endogenous BMP7 expression/signaling in GSC may contribute to maintained stemness, EMT, and chemoresistant phenotype, suggesting that BMP7 treatment may provide a novel strategy in combination with TMZ for an effective treatment of glioblastoma exhibiting unmethylated MGMT

    Investigating the role of Hedgehog/GLI1 signaling in glioblastoma cell response to temozolomide.

    Get PDF
    Resistance to chemotherapy substantially hinders successful glioblastoma (GBM) treatment, contributing to an almost 100% mortality rate. Resistance to the frontline chemotherapy, temozolomide (TMZ), arises from numerous signaling pathways that are deregulated in GBM, including Hedgehog (Hh) signaling. Here, we investigate suppression of Hh signaling as an adjuvant to TMZ using U87-MG and T98G cell lines as in vitro models of GBM. We found that silencing GLI1 with siRNA reduces cell metabolic activity by up to 30% in combination with TMZ and reduces multidrug efflux activity by 2.5-fold. Additionally, pharmacological GLI inhibition modulates nuclear p53 levels and decreases MGMT expression in combination with TMZ. While we surprisingly found that silencing GLI1 does not induce apoptosis in the absence of TMZ co-treatment, we discovered silencing GLI1 without TMZ co-treatment induces senescence as evidenced by a significant 2.3-fold increase in senescence associated β-galactosidase staining, and this occurs in a loss of PTEN-dependent manner. Finally, we show that GLI inhibition increases apoptosis in glioma stem-like cells by up to 6.8-fold in combination with TMZ, and this reduces the size and number of neurospheres grown from glioma stem-like cells. In aggregate, our data warrant the continued investigation of Hh pathway inhibitors as adjuvants to TMZ chemotherapy and highlight the importance of identifying signaling pathways that determine whether co-treatment will be successful

    Restoration of Sensitivity in Chemo

    Get PDF
    Glioblastoma (GBM) is the most common and aggressive brain tumor in adults. Despite multimodal treatments including surgery, chemotherapy and radiotherapy the prognosis remains poor and relapse occurs regularly. The alkylating agent temozolomide (TMZ) has been shown to improve the overall survival in patients with malignant gliomas, especially in tumors with methylated promoter of the O6-methylguanine-DNA-methyltransferase (MGMT) gene. However, intrinsic and acquired resistance towards TMZ makes it crucial to find new therapeutic strategies aimed at improving the prognosis of patients suffering from malignant gliomas. Cold atmospheric plasma is a new auspicious candidate in cancer treatment. In the present study we demonstrate the anti-cancer properties of different dosages of cold atmospheric plasma (CAP) both in TMZ-sensitive and TMZ-resistant cells by proliferation assay, immunoblotting, cell cycle analysis, and clonogenicity assay. Importantly, CAP treatment restored the responsiveness of resistant glioma cells towards TMZ therapy. Concomitant treatment with CAP and TMZ led to inhibition of cell growth and cell cycle arrest, thus CAP might be a promising candidate for combination therapy especially for patients suffering from GBMs showing an unfavorable MGMT status and TMZ resistance

    Severe and prolonged myelosuppression during concomitant temozolomide and radiotherapy treatment in a patient with glioblastoma multiforme

    Get PDF
    Aims: We describe the case of a patient with glioblastoma (GBM) who developed severe and prolonged myelosuppression during concomitant daily temozolomide (TMZ) and radiotherapy (RT) treatment. Analysis of polymorphisms in genes correlated with TMZ-induced myelotoxicity was also performed. Presentation of the Case: A 67–year-old man with diagnosis of GBM undergoing concomitant RT-TMZ treatment developed severe and prolonged pancytopenia that led to discontinuation of TMZ and required frequent platelet and red cells transfusions. Analysis of single nucleotide polymorphisms (SNPs) in the genes NAD(P)H dehydrogenase, quinone 1 (NQO1) and glutathione S-transferase pi 1 (GSTP1) was carried out. Both SNPs were found to be wild-type. Discussion: TMZ is an oral alkylating agent used for the treatment of glioblastoma. TMZ is usually considered well tolerated and safe, with nausea and mild myelosuppression being the most common side effects. However, severe haematologic adverse events have been also reported. Recently, there has been growing interest in gene polymorphisms that might be associated with an increased risk of hematologic toxicity. Conclusion: Myelosuppression is a side effect that can occur relatively early during concomitant TMZ treatment and can negatively impact on patient’s quality of life. Further studies are warranted to find out a correlation between genetic factors and the occurrence of severe hematologic toxicity

    KCa3.1 channel inhibition sensitizes malignant gliomas to temozolomide treatment

    Get PDF
    Malignant gliomas are among the most frequent and aggressive cerebral tumors, characterized by high proliferative and invasive indexes. Standard therapy for patients, after surgery and radiotherapy, consists of temozolomide (TMZ), a methylating agent that blocks tumor cell proliferation. Currently, there are no therapies aimed at reducing tumor cell invasion. Ion channels are candidate molecular targets involved in glioma cell migration and infiltration into the brain parenchyma. In this paper we demonstrate that: i) blockade of the calcium-activated potassium channel KCa3.1 with TRAM-34 has co-adjuvant effects with TMZ, reducing GL261 glioma cell migration, invasion and colony forming activity, increasing apoptosis, and forcing cells to pass the G2/M cell cycle phase, likely through cdc2 de-phosphorylation; ii) KCa3.1 silencing potentiates the inhibitory effect of TMZ on glioma cell viability; iii) the combination of TMZ/TRAM-34 attenuates the toxic effects of glioma conditioned medium on neuronal cultures, through a microglia dependent mechanism since the effect is abolished by clodronate-induced microglia killing; iv) TMZ/TRAM-34 co-treatment increases the number of apoptotic tumor cells, and the mean survival time in a syngeneic mouse glioma model (C57BL6 mice implanted with GL261 cells); v) TMZ/TRAM-34 co-treatment reduces cell viability of GBM cells and cancer stem cells (CSC) freshly isolated from patients.Taken together, these data suggest a new therapeutic approach for malignant glioma, targeting both glioma cell proliferating and migration, and demonstrate that TMZ/TRAM-34 co-treatment affects both glioma cells and infiltrating microglia, resulting in an overall reduction of tumor cell progression

    Metabolic reprogramming promotes myogenesis during aging

    Get PDF
    Sarcopenia is the age-related progressive loss of skeletal muscle mass and strength finally leading to poor physical performance. Impaired myogenesis contributes to the pathogenesis of sarcopenia, while mitochondrial dysfunctions are thought to play a primary role in skeletal muscle loss during aging. Here we studied the link between myogenesis and metabolism. In particular, we analyzed the effect of the metabolic modulator trimetazidine (TMZ) on myogenesis in aging. We show that reprogramming the metabolism by TMZ treatment for 12 consecutive days stimulates myogenic gene expression in skeletal muscle of 22-month-old mice. Our data also reveal that TMZ increases the levels of mitochondrial proteins and stimulates the oxidative metabolism in aged muscles, this finding being in line with our previous observations in cachectic mice. Moreover, we show that, besides TMZ also other types of metabolic modulators (i.e., 5-Aminoimidazole-4-Carboxamide Ribofuranoside-AICAR) can stimulate differentiation of skeletal muscle progenitors in vitro. Overall, our results reveal that reprogramming the metabolism stimulates myogenesis while triggering mitochondrial proteins synthesis in vivo during aging. Together with the previously reported ability of TMZ to increase muscle strength in aged mice, these new data suggest an interesting non-invasive therapeutic strategy which could contribute to improving muscle quality and neuromuscular communication in the elderly, and counteracting sarcopenia

    Evaluation of Novel Imidazotetrazine Analogues Designed to Overcome Temozolomide Resistance and Glioblastoma Regrowth

    Get PDF
    The cellular responses to two new temozolomide (TMZ) analogues, DP68 and DP86, acting against glioblastoma multi- forme (GBM) cell lines and primary culture models are reported. Dose–response analysis of cultured GBM cells revealed that DP68 is more potent than DP86 and TMZ and that DP68 was effective even in cell lines resistant to TMZ. On the basis of a serial neurosphere assay, DP68 inhibits repop- ulation of these cultures at low concentrations. The efficacy of these compounds was independent of MGMT and MMR func- tions. DP68-induced interstrand DNA cross-links were dem- onstrated with H2O2-treated cells. Furthermore, DP68 induced a distinct cell–cycle arrest with accumulation of cells in S phase that is not observed for TMZ. Consistent with this biologic response, DP68 induces a strong DNA damage response, including phosphorylation of ATM, Chk1 and Chk2 kinases, KAP1, and histone variant H2AX. Suppression of FANCD2 expression or ATR expression/kinase activity enhanced anti- glioblastoma effects of DP68. Initial pharmacokinetic analysis revealed rapid elimination of these drugs from serum. Collec- tively, these data demonstrate that DP68 is a novel and potent antiglioblastoma compound that circumvents TMZ resistance, likely as a result of its independence from MGMT and mismatch repair and its capacity to cross-link strands of DN
    • …
    corecore