4,820 research outputs found
Automation potential of a new, rapid, microscopy based method for screening drug-polymer solubility
For the pharmaceutical industry, the preformulation screening of the compatibility of drug and polymeric excipients can often be time-consuming because of the use of trial-and-error approaches. This is also the case for selecting highly effective polymeric excipients for forming molecular dispersions in order to improve the dissolution and subsequent bio-availability of a poorly soluble drug. Previously, we developed a new thermal imaging-based rapid screening method, thermal analysis by structure characterization (TASC), which can rapidly detect the melting point depression of a crystalline drug in the presence of a polymeric material. In this study, we used melting point depression as an indicator of drug solubility in a polymer and further explored the potential of using the TASC method to rapidly screen and identify polymers in which a drug is likely to have high solubility. Here, we used a data bank of 5 model drugs and 10 different pharmaceutical grade polymers to validate the screening potential of TASC. The data indicated that TASC could provide significant improvement in the screening speed and reduce the materials used without compromising the sensitivity of detection. It should be highlighted that the current method is a screening method rather than a method that provides absolute measurement of the degree of solubility of a drug in a polymer. The results of this study confirmed that the TASC results of each drug-polymer pair could be used in data matrices to indicate the presence of significant interaction and solubility of the drug in the polymer. This forms the foundation for automating the screening process using artificial intelligence
Water-soluble SOA from Alkene ozonolysis: composition and droplet activation kinetics inferences from analysis of CCN activity
Cloud formation characteristics of the water-soluble organic fraction (WSOC) of secondary organic aerosol (SOA) formed from the ozonolysis of alkene hydrocarbons (terpinolene, 1-methlycycloheptene and cycloheptene) are studied. Based on size-resolved measurements of CCN activity (of the pure and salted WSOC samples) we estimate the average molar volume and surface tension depression associated with the WSOC using Köhler Theory Analysis (KTA). Consistent with known speciation, the results suggest that the WSOC are composed of low molecular weight species, with an effective molar mass below 200 g mol^(−1). The water-soluble carbon is also surface-active, depressing surface tension 10–15% from that of pure water (at CCN-relevant concentrations). The inherent hygroscopicity parameter, κ, of the WSOC ranges between 0.17 and 0.25; if surface tension depression and molar volume effects are considered in κ, a remarkably constant "apparent" hygroscopicity ~0.3 emerges for all samples considered. This implies that the volume fraction of soluble material in the parent aerosol is the key composition parameter required for prediction of the SOA hygroscopicity, as shifts in molar volume across samples are compensated by changes in surface tension. Finally, using "threshold droplet growth analysis", the water-soluble organics in all samples considered do not affect CCN activation kinetics
Discontinuities in hygroscopic growth below and above water saturation for laboratory surrogates of oligomers in organic atmospheric aerosols
Discontinuities in apparent hygroscopicity below and above water saturation have been observed for organic and mixed organic–inorganic aerosol particles in both laboratory studies and in the ambient atmosphere. However, uncertainty remains regarding the factors that contribute to observations of low hygroscopic growth below water saturation but enhanced cloud condensation nuclei (CCN) activity for a given aerosol population. Utilizing laboratory surrogates for oligomers in atmospheric aerosols, we explore the extent to which such discontinuities are influenced by organic component molecular mass and viscosity, non-ideal thermodynamic interactions between aerosol components, and the combination of these factors. Measurements of hygroscopic growth under subsaturated conditions and the CCN activity of aerosols comprised of polyethylene glycol (PEG) with average molecular masses ranging from 200 to 10 000 g mol⁻¹ and mixtures of PEG with ammonium sulfate (AS) were conducted. Experimental results are compared to calculations of hygroscopic growth at thermodynamic equilibrium conducted with the Aerosol Inorganic Organic Mixtures Functional groups Activity Coefficients (AIOMFAC) model, and the potential influence of kinetic limitations on observed water uptake was further explored through estimations of water diffusivity in the PEG oligomers. Particle-phase behavior, including the prevalence of liquid–liquid phase separation (LLPS), was also modeled with AIOMFAC. Under subsaturated relative humidity (RH) conditions, we observed little variability in hygroscopic growth across PEG systems with different molecular masses; however, an increase in CCN activity with increasing PEG molecular mass was observed. This effect is most pronounced for PEG–AS mixtures, and, in fact, an enhancement in CCN activity was observed for the PEG10000–AS mixture as compared to pure AS, as evidenced by a 15 % reduction in critical activation diameter at a supersaturation of 0.8 %. We also observed a marked increase in apparent hygroscopicity for mixtures of higher molecular mass PEG and AS under supersaturated conditions as compared to subsaturated hygroscopic growth. AIOMFAC-based predictions and estimations of water diffusivity in PEG suggest that such discontinuities in apparent hygroscopicity above and below water saturation can be attributed, at least in part, to differences in the sensitivity of water uptake behavior to surface tension effects. There is no evidence that kinetic limitations to water uptake due to the presence of viscous aerosol components influenced hygroscopic growth. For the systems that display an enhancement in apparent hygroscopicity above water saturation, LLPS is predicted to persist to high RH. This indicates a miscibility gap and is likely to influence bulk-to-surface partitioning of PEG at high RH, impacting droplet surface tension and CCN activity. This work provides insight into the factors likely to be contributing to discontinuities in aerosol water-uptake behavior below and above water saturation that have been observed previously in the ambient atmosphere
Solubility improvement of progesterone from solid dispersions prepared by solvent evaporation and co-milling
The aim of this contribution was to evaluate the impact of processing methods and polymeric carriers on the physicochemical properties of solid dispersions of the poorly soluble drug progesterone (PG). Five polymers: hydroxypropyl methylcellulose (HPMC), hydroxypropyl methylcellulose acetate succinate (HPMCAS), microcrystalline cellulose (MCC), polyvinylpyrrolidone (PVP) and silica (SiO2), and two processing methods: solvent evaporation (SE) and mechano-chemical activation by co-milling (BM) were applied. H-bonding was demonstrated by FTIR spectra as clear shifting of drug peaks at 1707 cm−1 (C20 carbonyl) and 1668 cm−1 (C3 carbonyl). Additionally, spectroscopic and thermal analysis revealed the presence of unstable PG II polymorphic form and a second heating DSC cycle, the presence of another polymorph possibly assigned to form III, but their influence on drug solubility was not apparent. Except for PG–MCC, solid dispersions improved drug solubility compared to physical mixtures. For SE dispersions, an inverse relationship was found between drug water solubility and drug–polymer Hansen solubility parameter difference (∆δt), whereas for BM dispersions, the solubility was influenced by both the intermolecular interactions and the polymer Tg. Solubility improvement with SE was demonstrated for all except PG–MCC dispersions, whereas improvement with BM was demonstrated by the PG–HPMC, PG–PVP and PG–HPMCAS dispersions, the last showing impressive increase from 34.21 to 82.13 μg/mL. The extensive H-bonding between PG and HPMCAS was proved by FTIR analysis of the dispersion in the liquid state. In conclusion, although SE improved drug solubility, BM gave more than twice greater improvement. This indicates that directly operating intermolecular forces are more efficient than the solvent mediated
The sorption and permeation of moisture in moisture barrier polymer film coatings
Several moisture barrier coatings for use as barriers to moisture uptake into solid dosage forms of moisture-sensitive drug substances are commercially available. The aim of this study was to investigate the moisture sorption and permeation characteristics of four moisture barrier coatings, formulated from the following polymers, i.e., ethyl methacrylate copolymer (Eudragit L30 D-55®), aminobutyl methacrylate copolymer (Eudragit EPO®), poly(vinyl alcohol) (Opadry AMB ®) and hypromellose system (Sepifilm LP 10®).
The gravimetric vapour sorption technique, utilising a dynamic vapour sorption apparatus (Surface Measurement Systems, UK), was the main method used to determine the extent of moisture sorption and desorption. Cast free films of the moisture barrier coatings, and uncoated and coated model tablet cores were investigated. The model tablet cores were designed to exhibit hygroscopic, non- hygroscopic or waxy characteristics. Additional tests with near-infrared spectroscopy, thermogravimetric analysis and dissolution testing were done to ascertain the hydration characteristics and/or the water- coating interactions.
Sepifilm LP and Opadry AMB films sorbed comparatively more moisture than the Eudragit L30 D-55 and Eudragit EPO films. Differences in hygroscopicity of the films were attributed to differences in the hydrophilicity of the constitutive polymers. Analysis of sorption-desorption kinetics showed that all the film samples exhibited non-Fickian kinetics. The calculated permeability coefficients for moisture in the films were of the order of 10-6 to 10-7 cm3 [(STP) cm/cm2 s cmHg)]. Thus, the moisture barrier coatings were comparatively inferior to conventional barriers like high density polyethylene or polyvinylidene (cling film), with reported permeabilitities of the order of 10-10 to 10-11 [(STP) cm/cm2 s cmHg)]. Application of the moisture barrier coatings onto the model tablet cores resulted in a net reduction in the extent of sorption over the uncoated cores only for the hygroscopic cores. Thus, there was no benefit of applying a moisture barrier coating to the waxy or non-hygroscopic tablet formulations. Results obtained from the stability profile of aspirin used as a model moisture-sensitive compound in the tablet cores confirmed this outcome. However, when the barrier coatings were applied onto the aspirin model cores, the coated samples exhibited higher degradation than the uncoated samples. No correlation between the degradation of aspirin in the cores and the permeability of the films was established.
As the moisture barrier coatings were not able to completely seal the tablet cores from moisture uptake, it was speculated the sorbed moisture decreased the adhesion of the coatings to the underlying cores. This facilitated the collection of water at the coating- core boundary, from where aspirin hydrolysis could have taken place. Therefore, if moisture barrier coatings are to protect moisture sensitive compounds in tablet cores, the ability to prevent hydrolysis at the coating-core boundary is deemed essential
Janus Scorpionates: Supramolecular Tectons for the Directed Assembly of Hard−Soft Alkali Metallopolymer Chains
A new scorpionate ligand [HB(mtda)3-] containing mercaptothiadiazolyl (mtda) heterocyclic rings with both hard nitrogen donors and soft sulfur donors has been prepared. This new ligand, the Janus scorpionate, is a hybrid of a tris(pyrazolyl)borate and a tris(mercaptoimidazolyl)borate. The differential hard/soft character of the dissimilar donor groups in this bridging ligand was exploited for the controlled solid-state organization of homometallic and heterometallic alkali metal coordination polymers. Remarkably, in the case of sodium, coordination polymers with both acentric (with NaS3N3H kernels) and centric (with alternating NaN6 and NaS6H2 kernels) chains are found in the same crystal (where the centricity is defined by the relative orientations of the B−H bonds of the ligands along the lattice). For the homometallic potassium congener, the larger cation size, compared to sodium, induced significant distortions and favored a polar arrangement of ligands in the resulting coordination polymer chain. An examination of the solid-state structure of the mixed alkali metal salt system revealed that synergistic binding of smaller sodium cations to the nitrogen portion and of the larger potassium cations to the sulfur portion of the ligand minimizes the ligand distortions relative to the homometallic coordination polymer counterparts, a design feature of the ligand that likely assists in thermodynamically driving the self-assembly of the heterometallic chains. The effect of alkali metal complexation on the solution properties of the ligand was studied by comparing NMR chemical shifts, B−H stretching frequencies, and electrochemical properties with those of the noncoordinating tetrabutylammonium salt of the scorpionate. The similarity of these data regardless of cation indicates that the salts are likely dissociated in solution rather than maintaining their solid-state polymeric structures. This data is augmented by the ESI(±) mass spectral data for a series of mixed alkali metal tris(mercaptothiadiazolyl)borates that also indicate that dissociation occurs in solution
Hygroscopicity of secondary organic aerosols formed by oxidation of cycloalkenes, monoterpenes, sesquiterpenes, and related compounds
A series of experiments has been conducted in the Caltech indoor smog chamber facility to investigate the water uptake properties of aerosol formed by oxidation of various organic precursors. Secondary organic aerosol (SOA) from simple and substituted cycloalkenes (C5-C8) is produced in dark ozonolysis experiments in a dry chamber (RH~5%). Biogenic SOA from monoterpenes, sesquiterpenes, and oxygenated terpenes is formed by photooxidation in a humid chamber (~50% RH). Using the hygroscopicity tandem differential mobility analyzer (HTDMA), we measure the diameter-based hygroscopic growth factor (GF) of the SOA as a function of time and relative humidity. All SOA studied is found to be slightly hygroscopic, with smaller water uptake than that of typical inorganic aerosol substances. The aerosol water uptake increases with time early in the experiments for the cycloalkene SOA, but decreases with time for the biogenic SOA. This behavior could indicate competing effects between the formation of more highly oxidized polar compounds (more hygroscopic), and formation of longer-chained oligomers (less hygroscopic). All SOA also exhibit a smooth water uptake with RH with no deliquescence or efflorescence. The water uptake curves are found to be fitted well with an empirical three-parameter functional form. The measured pure organic GF values at 85% RH are between 1.09–1.16 for SOA from ozonolysis of cycloalkenes, 1.01–1.04 for sesquiterpene photooxidation SOA, and 1.06–1.11 for the monoterpene and oxygenated terpene SOA. The GF of pure SOA (GForg) in experiments in which inorganic seed aerosol is used is determined by assuming volume-weighted water uptake (Zdanovskii-Stokes-Robinson or ''ZSR'' approach) and using the size-resolved organic mass fraction measured by the Aerodyne Aerosol Mass Spectrometer. Knowing the water content associated with the inorganic fraction yields GForg values. However, for each precursor, the GForg values computed from different HTDMA-classified diameters agree with each other to varying degrees. Lack of complete agreement may be a result of the non-idealities of the solutions that are not captured by the ZSR method. Comparing growth factors from different precursors, we find that GForg is inversely proportional to the precursor molecular weight and SOA yield, which is likely a result of the fact that higher-molecular weight precursors tend to produce larger and less hygroscopic oxidation products
The use of polymer blends to improve stability and performance of electrospun solid dispersions: The role of miscibility and phase separation
© 2021 Elsevier B.V. All rights reserved. This is the accepted manuscript version of an article which has been published in final form at https://doi.org/10.1016/j.ijpharm.2021.120637Solid dispersion-based nanofiber formulations of poorly soluble drugs prepared by electrospinning (ES) with a water-soluble polymer, can offer significant improvements in drug dissolution for oral drug administration. However, when hygroscopic polymers, such as polyvinylpyrrolidone (PVP) are used, environmental moisture sorption can lead to poor physical stability on storage. This study investigated the use of polymer blends to modify PVP-based ES formulations of a model poorly soluble drug, fenofibrate (FF), to improve its physical stability without compromising dissolution enhancement. FF-PVP ES dispersions demonstrated clear dissolution enhancement, but poor storage stability against high humidity. Polymer blends of PVP with Eudragit E, Soluplus and hypromellose acetate succinate (HPMCAS), were selected because of the low intrinsic moisture sorption of these polymers. The drug-polymer and polymer-polymer miscibility study revealed that FF was more miscible with Eudragit E and Soluplus than with PVP and HPMCAS, and that PVP was more miscible with HPMCAS than Eudragit E and Soluplus. This led to different configurations of phase separation in the placebo and drug-loaded fibres. The in vitro drug release data confirmed that the use of PVP-Eudragit E retained the dissolution enhancement of the PVP formulation, whereas PVP-Soluplus reduced the drug release rate in comparison to FF-PVP formulations. The moisture sorption results confirmed that moisture uptake by the polymer blends was reduced, but formulation deformation occurred to phase-separated blend formulations. The data revealed the importance of miscibility and phase separation in understanding the physical stability of the ES fibre mats. The findings provide insight into the design of formulations that can provide dissolution enhancement balanced with improved storage stabilityPeer reviewedFinal Accepted Versio
Evaluation and enhancement of physical stability of amorphous solid dispersions
A major concern during formulation development has been to enhance the dissolution rate and bioavailability of poorly water-soluble drugs.[1],[2] The amorphous forms of APIs have attracted considerable attention as the amorphous forms tend to exhibit significantly higher levels of supersaturation in aqueous media when compared to the crystalline forms.[3],[4] For drugs which bioavailability is limited by aqueous solubility (biopharmaceutical classification system (BCS) class II drugs), which is a significant number of recently discovered drug candidates, the improved solubility may lead to enhanced bioavailability.[5-7] Oral absorption of APIs depends on two broad, but crucial, events, namely drug solubilization and gastrointestinal permeation.[8] Amorphous solid dispersions have been widely investigated to increase the gastrointestinal permeability, and the roles played by polymers and other excipients were also studied.[9],[10] However, even after 40 years of active research there have not been many commercial products that have reached the market based on amorphous solid dispersion technology. [11, 12] The primary reason for this is a combination of the stability and scale up issues associated with this approach, which has been reported by several authors.[13-15] Hot-melt extrusion currently stands as the most promising approach for solving the scale up issues associated with amorphous solid dispersion systems.[16] Unfortunately, amorphous solid dispersion systems still face the issue that the amorphous form is, in general, thermodynamically unstable relative to its crystalline counterpart(s), [17], [18] and therefore may ultimately result in unacceptable changes in the API’s physical properties. [19] The most comapproach of preserving the solubility/bioavailability enhancement imparted by the high-energy amorphous form is to kinetically stabilize the drug substance in the amorphous state for the duration of the anticipated shelf life. Amorphous solid dispersions can be stabilized as such if there exists a sufficient energy barrier provided by the polymer(s) with a high glass transition temperature, or by way of molecular interactions between the API and the polymeric carrier, such as hydrogen bonding. So the study to evaluate and enhance the physical stability of the amorphous solid dispersions is with great importance for the pharmaceutical industry. This thesis would focus on the evaluation and enhancement of the physical stability of amorphous solid dispersion
- …