7,276 research outputs found
Gravitating Opposites Attract
Generalizing previous work by two of us, we prove the non-existence of
certain stationary configurations in General Relativity having a spatial
reflection symmetry across a non-compact surface disjoint from the matter
region. Our results cover cases such that of two symmetrically arranged
rotating bodies with anti-aligned spins in () dimensions, or
two symmetrically arranged static bodies with opposite charges in 3+1
dimensions. They also cover certain symmetric configurations in
(3+1)-dimensional gravity coupled to a collection of scalars and abelian vector
fields, such as arise in supergravity and Kaluza-Klein models. We also treat
the bosonic sector of simple supergravity in 4+1 dimensions.Comment: 13 pages; slightly amended version, some references added, matches
version to be published in Classical and Quantum Gravit
An alternative derivation of the gravitomagnetic clock effect
The possibility of detecting the gravitomagnetic clock effect using
artificial Earth satellites provides the incentive to develop a more intuitive
approach to its derivation. We first consider two test electric charges moving
on the same circular orbit but in opposite directions in orthogonal electric
and magnetic fields and show that the particles take different times in
describing a full orbit. The expression for the time difference is completely
analogous to that of the general relativistic gravitomagnetic clock effect in
the weak-field and slow-motion approximation. The latter is obtained by
considering the gravitomagnetic force as a small classical non-central
perturbation of the main central Newtonian monopole force. A general expression
for the clock effect is given for a spherical orbit with an arbitrary
inclination angle. This formula differs from the result of the general
relativistic calculations by terms of order c^{-4}.Comment: LaTex2e, 11 pages, 1 figure, IOP macros. Submitted to Classical and
Quantum Gravit
More about Birkhoff's Invariant and Thorne's Hoop Conjecture for Horizons
A recent precise formulation of the hoop conjecture in four spacetime
dimensions is that the Birkhoff invariant (the least maximal length of
any sweepout or foliation by circles) of an apparent horizon of energy and
area should satisfy . This conjecture together with the
Cosmic Censorship or Isoperimetric inequality implies that the length of
the shortest non-trivial closed geodesic satisfies . We have
tested these conjectures on the horizons of all four-charged rotating black
hole solutions of ungauged supergravity theories and find that they always
hold. They continue to hold in the the presence of a negative cosmological
constant, and for multi-charged rotating solutions in gauged supergravity.
Surprisingly, they also hold for the Ernst-Wild static black holes immersed in
a magnetic field, which are asymptotic to the Melvin solution. In five
spacetime dimensions we define as the least maximal area of all
sweepouts of the horizon by two-dimensional tori, and find in all cases
examined that , which we conjecture holds
quiet generally for apparent horizons. In even spacetime dimensions ,
we find that for sweepouts by the product , is
bounded from above by a certain dimension-dependent multiple of the energy .
We also find that is bounded from above by a certain
dimension-dependent multiple of the horizon area . Finally, we show that
is bounded from above by a certain dimension-dependent multiple of
the energy, for all Kerr-AdS black holes.Comment: 25 page
- âŠ