215,431 research outputs found
Mechanisms behind Functional Avidity Maturation in T Cells
During an immune response antigen-primed B-cells increase their antigen responsiveness by affinity maturation mediated by somatic hypermutation of the genes encoding the antigen-specific B-cell receptor (BCR) and by selection of higher-affinity B cell clones. Unlike the BCR, the T-cell receptor (TCR) cannot undergo affinity maturation. Nevertheless, antigen-primed T cells significantly increase their antigen responsiveness compared to antigen-inexperienced (naïve) T cells in a process called functional avidity maturation. This paper covers studies that describe differences in T-cell antigen responsiveness during T-cell differentiation along with examples of the mechanisms behind functional avidity maturation in T cells
TGF-β-responsive CAR-T cells promote anti-tumor immune function.
A chimeric antigen receptor (CAR) that responds to transforming growth factor beta (TGF-β) enables the engineering of T cells that convert this immunosuppressive cytokine into a potent T-cell stimulant. However, clinical translation of TGF-β CAR-T cells for cancer therapy requires the ability to productively combine TGF-β responsiveness with tumor-targeting specificity. Furthermore, the potential concern that contaminating, TGF-β?producing regulatory T (Treg) cells may preferentially expand during TGF-β CAR-T cell manufacturing and suppress effector T (Teff) cells demands careful evaluation. Here, we demonstrate that TGF-β CAR-T cells significantly improve the anti-tumor efficacy of neighboring cytotoxic T cells. Furthermore, the introduction of TGF-β CARs into mixed T-cell populations does not result in the preferential expansion of Treg cells, nor do TGF-β CAR-Treg cells cause CAR-mediated suppression of Teff cells. These results support the utility of incorporating TGF-β CARs in the development of adoptive T-cell therapy for cancer
Tuning of antigen sensitivity by T cell receptor-dependent negative feedback controls T cell effector function inflammed tissues
Activated T cells must mediate effector responses sufficient to clear pathogens while avoiding excessive tissue damage. Here we have combined dynamic intravital microscopy with ex vivo assessments of T cell cytokine responses to generate a detailed spatiotemporal picture of CD4+ T cell effector regulation in the skin. In response to antigen, effector T cells arrested transiently on antigen presenting cells, briefly producing cytokine and then resuming migration. Antigen recognition led to PD-1 upregulation of the programmed death-1 (PD-1) glycoprotein by T cells and blocking its canonical ligand, programmed death-ligand 1 (PD-L1), lengthened the duration of migration arrest and cytokine production, showing that PD-1 interaction with PD-L1 is a major negative feedback regulator of antigen responsiveness. We speculate that the immune system employs a mechanism involving T cell recruitment, transient activation, and rapid desensitization, allowing the T cell response to rapidly adjust to changes in antigen presentation and minimize collateral injury to the host
Early signaling defects in human T cells anergized by T cell presentation of autoantigen.
Major histocompatibility complex class II-positive human T cell clones are nontraditional antigen-presenting cells (APCs) that are able to simultaneously present and respond to peptide or degraded antigen, but are unable to process intact protein. Although T cell presentation of peptide antigen resulted in a primary proliferative response, T cells that had been previously stimulated by T cells presenting antigen were completely unresponsive to antigen but not to interleukin 2 (IL-2). In contrast, peptide antigen presented by B cells or DR2+ L cell transfectants resulted in T cell activation and responsiveness to restimulation. The anergy induced by T cell presentation of peptide could not be prevented by the addition of either autologous or allogeneic B cells or B7+ DR2+ L cell transfectants, suggesting that the induction of anergy could occur in the presence of costimulation. T cell anergy was induced within 24 h of T cell presentation of antigen and was long lasting. Anergized T cells expressed normal levels of T cell receptor/CD3 but were defective in their ability to release [Ca2+]i to both alpha CD3 and APCs. Moreover, anergized T cells did not proliferate to alpha CD2 monoclonal antibodies or alpha CD3 plus phorbol myristate acetate (PMA), nor did they synthesize IL-2, IL-4, or interferon gamma mRNA in response to either peptide or peptide plus PMA. In contrast, ionomycin plus PMA induced both normal proliferative responses and synthesis of cytokine mRNA, suggesting that the signaling defect in anergized cells occurs before protein kinase C activation and [Ca2+]i release
Recommended from our members
Dissecting the molecular mechanisms regulating proliferation, antigen responsiveness, and differentiation of CD4⁺ T lymphocytes : a central role for the mammalian target of Rapamycin (mTor)
The intracellular events that regulate lymphocyte proliferation upon antigen encounter and the ability of the cells to respond to subsequent stimulation and to differentiate into effector cells remain largely to be understood. Several studies have linked T cell proliferation with the maintenance of antigen responsiveness and with the ability of the cells to differentiate and to acquire proper effector functions. The aim of my Ph.D. research project was to investigate the role of the TCR, CD28, and IL-2 generated intracellular events dictating CD4+ T lymphocyte proliferation and differentiation. In a model of CD3-induced clonal anergy, we have shown that antigen responsiveness was uniquely regulated by an IL-2/IL-2R-induced signalling event, which was delivered independently of IL-2-driven cell proliferation, and which was Rapamycin-sensitive. This indicates that proliferation and antigen responsiveness are independently regulated and that the latter specifically requires intact signalling through mTor, the mammalian target of Rapamycin. Moreover, we have shown that proper activation of p70S6k, one the known target of mTor, might play a crucial role in the maintenance of T lymphocyte responsiveness. We have also investigated the role of mTor in a model of in vitro antigen driven naive T cell differentiation. In this model, blocking mTor activity by the addition of Rapamycin during T cell activation, allowed comparable T cell expansion, but completely prevented polarization of effector cells. Together our results indicate that the intracellular events that dictate T cell proliferation are distinct from the intracellular signals that modulate the functional phenotype of activated T lymphocytes and suggest that, while mTor-dependent signalling is dispensable for T cell proliferation, it is primarily involved in the acquisition of proper T cell effector functions
The CD3-Zeta Chimeric Antigen Receptor Overcomes TCR Hypo-Responsiveness of Human Terminal Late-Stage T Cells
Adoptive therapy of malignant diseases with tumor-specific cytotoxic T cells showed remarkable efficacy in recent trials. Repetitive T cell receptor (TCR) engagement of target antigen, however, inevitably ends up in hypo-responsive cells with terminally differentiated KLRG-1+ CD57+ CD7− phenotype limiting their therapeutic efficacy. We here revealed that hypo-responsiveness of CMV-specific late-stage CD8+ T cells is due to reduced TCR synapse formation compared to younger cells. Membrane anchoring of TCR components contributes to T cell hypo-responsiveness since dislocation of galectin-3 from the synapse by swainsonine restored both TCR synapse formation and T cell response. Transgenic expression of a CD3-zeta signaling chimeric antigen receptor (CAR) recovered hypo-responsive T cells to full effector functions indicating that the defect is restricted to TCR membrane components while synapse formation of the transgenic CAR was not blocked. CAR engineered late-stage T cells released cytokines and mediated redirected cytotoxicity as efficiently as younger effector T cells. Our data provide a rationale for TCR independent, CAR mediated activation in the adoptive cell therapy to avoid hypo-responsiveness of late-stage T cells upon repetitive antigen encounter
Selective Involvement of the Checkpoint Regulator VISTA in Suppression of B-Cell, but Not T-Cell, Responsiveness by Monocytic Myeloid-Derived Suppressor Cells from Mice Infected with an Immunodeficiency-Causing Retrovirus
Inhibition of T-cell responses in tumor microenvironments by myeloid-derived suppressor cells (MDSCs) is widely accepted. We demonstrated augmentation of monocytic MDSCs whose suppression of not only T-cell, but also B-cell, responsiveness paralleled the immunodeficiency during LP-BM5 retrovirus infection. MDSCs inhibited T cells by inducible nitric oxide synthase (iNOS)/nitric oxide (NO), but uniquely, inhibition of B cells was ~50% dependent each on iNOS/NO and the MDSC-expressed negative-checkpoint regulator VISTA. Blockade with a combination of iNOS/NO and VISTA caused additive or synergistic abrogation of MDSC-mediated suppression of B-cell responsiveness
Oestrogen, an evolutionary conserved regulator of T cell differentiation and immune tolerance in jawed vertebrates?
In teleosts, as in mammals, the immune system is tightly regulated by sexual steroid hormones, such as oestrogens. We investigated the effects of 17β-oestradiol on the expression of several genes related to T cell development and resulting T cell subpopulations in sea bass, Dicentrarchus labrax, for a primary lymphoid organ, the thymus, and two secondary lymphoid organs, the head-kidney and the spleen. In parallel, the oxidative burst capacity was assessed in leucocytes of the secondary lymphoid organs. Apoptosis- and proliferation-related genes, indicative of B and T cell clonal selection and lymphoid progenitor activity, were not affected by elevated oestrogen-levels. Sex-related oestrogen-responsiveness in T cell and antigen-presenting cell markers was observed, the expression of which was differentially induced by oestrogen-exposure in the three lymphoid organs. Remarkably, in the spleen, oestrogen increased regulatory T cell-related gene expression was associated with a decrease in oxidative burst capacity. To the best of our knowledge, this study indicates for the first time that physiological levels of oestrogen are likely to promote immune tolerance by modulating thymic function (i.e., T cell development and output) and peripheral T cells in teleosts, similar to previously reported oestrogenic effects in mammals.CCMAR/Multi/04326/2013; ANRfinanced project ETaT(ANR-15-CE32-0014); FR CNRS 3730 SCALE scholarshipinfo:eu-repo/semantics/publishedVersio
Serotonin-mediated tuning of human helper T cell responsiveness to the chemokine CXCL12
In addition to its role as neurotransmitter, serotonin (5-HT) is an important modulator of inflammation and immunity. Here, we report novel findings suggesting a 5-HT involvement in T cell migration. In particular, we show that 5-HT tunes the responsiveness of human T lymphocytes to the broadly expressed chemokine CXCL12 in transwell migration assays. By real-time PCR, western blot analysis and electrophysiological patch clamp experiments, we demonstrate that the type 3 5-HT receptor (5-HT 3) is functionally expressed in human primary T cells. In addition, specific 5-HT 3 receptor agonists selectively decrease T cell migration towards gradients of CXCL12 but not of inflammatory chemokines, such as CCL2 and CCL5. In transmigration experiments, 5-HT 3 receptor stimulation reverts the inhibitory effect of endothelial-bound CXCL12 on T cell migration. Our data suggest that the reduced T cell responsiveness to CXCL12 induced by 5-HT may occur to facilitate T cell extravasation and migration into inflamed tissues
- …