127,604 research outputs found
Outcome of computer-assisted surgery in patients with chronic rhinosinusitis
Abstract Objective: To compare the complication rates and outcome of computer-assisted versus non-computer-assisted functional endoscopic sinus surgery. Methods: We reviewed retrospectively the medical records of 276 patients who had undergone sinus surgery for chronic rhinosinusitis with (n=108) or without (n=168) computer assistance, from 1996 to 2004, to determine the incidence of complications and need for revision surgery. Results: The incidence of complications was 6.5 per cent in the computer-assisted group and 6.0 per cent in the non-computer-assisted group (p=1.00). In the computer-assisted group, 9.2 per cent needed revision surgery, compared with 10.7 per cent in the non-assisted group (p=0.84). Conclusions: Although our study found no significant difference in complications or revision rates, computer-assisted surgery serves as an important orientation aid during functional endoscopic sinus surger
Recent trends, technical concepts and components of computer-assisted orthopedic surgery systems: A comprehensive review
Computer-assisted orthopedic surgery (CAOS) systems have become one of the most important and challenging types of system in clinical orthopedics, as they enable precise treatment of musculoskeletal diseases, employing modern clinical navigation systems and surgical tools. This paper brings a comprehensive review of recent trends and possibilities of CAOS systems. There are three types of the surgical planning systems, including: systems based on the volumetric images (computer tomography (CT), magnetic resonance imaging (MRI) or ultrasound images), further systems utilize either 2D or 3D fluoroscopic images, and the last one utilizes the kinetic information about the joints and morphological information about the target bones. This complex review is focused on three fundamental aspects of CAOS systems: their essential components, types of CAOS systems, and mechanical tools used in CAOS systems. In this review, we also outline the possibilities for using ultrasound computer-assisted orthopedic surgery (UCAOS) systems as an alternative to conventionally used CAOS systems.Web of Science1923art. no. 519
Orbital and Maxillofacial Computer Aided Surgery: Patient-Specific Finite Element Models To Predict Surgical Outcomes
This paper addresses an important issue raised for the clinical relevance of
Computer-Assisted Surgical applications, namely the methodology used to
automatically build patient-specific Finite Element (FE) models of anatomical
structures. From this perspective, a method is proposed, based on a technique
called the Mesh-Matching method, followed by a process that corrects mesh
irregularities. The Mesh-Matching algorithm generates patient-specific volume
meshes from an existing generic model. The mesh regularization process is based
on the Jacobian matrix transform related to the FE reference element and the
current element. This method for generating patient-specific FE models is first
applied to Computer-Assisted maxillofacial surgery, and more precisely to the
FE elastic modelling of patient facial soft tissues. For each patient, the
planned bone osteotomies (mandible, maxilla, chin) are used as boundary
conditions to deform the FE face model, in order to predict the aesthetic
outcome of the surgery. Seven FE patient-specific models were successfully
generated by our method. For one patient, the prediction of the FE model is
qualitatively compared with the patient's post-operative appearance, measured
from a Computer Tomography scan. Then, our methodology is applied to
Computer-Assisted orbital surgery. It is, therefore, evaluated for the
generation of eleven patient-specific FE poroelastic models of the orbital soft
tissues. These models are used to predict the consequences of the surgical
decompression of the orbit. More precisely, an average law is extrapolated from
the simulations carried out for each patient model. This law links the size of
the osteotomy (i.e. the surgical gesture) and the backward displacement of the
eyeball (the consequence of the surgical gesture)
Optical techniques for 3D surface reconstruction in computer-assisted laparoscopic surgery
One of the main challenges for computer-assisted surgery (CAS) is to determine the intra-opera- tive morphology and motion of soft-tissues. This information is prerequisite to the registration of multi-modal patient-specific data for enhancing the surgeon’s navigation capabilites by observ- ing beyond exposed tissue surfaces and for providing intelligent control of robotic-assisted in- struments. In minimally invasive surgery (MIS), optical techniques are an increasingly attractive approach for in vivo 3D reconstruction of the soft-tissue surface geometry. This paper reviews the state-of-the-art methods for optical intra-operative 3D reconstruction in laparoscopic surgery and discusses the technical challenges and future perspectives towards clinical translation. With the recent paradigm shift of surgical practice towards MIS and new developments in 3D opti- cal imaging, this is a timely discussion about technologies that could facilitate complex CAS procedures in dynamic and deformable anatomical regions
Enhancing virtual bronchoscopy with intra-operative data using a multi-objective GAN
Aquest document està publicat al suplement de la revista "International Journal of Computer Assisted Radiology and Surgery" que recull totes les ponències del congrés CARS 2019-Computer Assisted Radiology and Surgery Proceedings of the 33rd International Congress and Exhibition Rennes, France, June 18 - 21, 2019. Totes les ponències d'aquest congrés publicades al Suplement es poden consultar a: https://doi.org/10.1007/s11548-019-01969-
Temporal perception of visual-haptic events in multimodal telepresence system
Book synopsis: Haptic interfaces are divided into two main categories: force feedback and tactile. Force feedback interfaces are used to explore and modify remote/virtual objects in three physical dimensions in applications including computer-aided design, computer-assisted surgery, and computer-aided assembly. Tactile interfaces deal with surface properties such as roughness, smoothness, and temperature. Haptic research is intrinsically multi-disciplinary, incorporating computer science/engineering, control, robotics, psychophysics, and human motor control. By extending the scope of research in haptics, advances can be achieved in existing applications such as computer-aided design (CAD), tele-surgery, rehabilitation, scientific visualization, robot-assisted surgery, authentication, and graphical user interfaces (GUI), to name a few. Advances in Haptics presents a number of recent contributions to the field of haptics. Authors from around the world present the results of their research on various issues in the field of haptics
Registration techniques for computer assisted orthopaedic surgery
The registration of 3D preoperative medical data to patients is a key task in developing computer assisted surgery systems. In computer assisted surgery, the patient in the operation theatre must be aligned with the coordinate system in which the preoperative data has been acquired, so that the planned surgery based on the preoperative data can be carried out under the guidance of the computer assisted surgery system.The aim of this research is to investigate registration algorithms for developing computer assisted bone surgery systems. We start with reference mark registration. New interpretations are given to the development of well knowm algorithms based on singular value decomposition, polar decomposition techniques and the unit quaternion representation of the rotation matrix. In addition, a new algorithm is developed based on the estimate of the rotation axis. For non-land mark registration, we first develop iterative closest line segment and iterative closest triangle patch registrations, similar to the well known iterative closest point registration, when the preoperative data are dense enough. We then move to the situation where the preoperative data are not dense enough. Implicit fitting is considered to interpolate the gaps between the data . A new ellipsoid fitting algorithm and a new constructive implicit fitting strategy are developed. Finally, a region to region matching procedure is proposed based on our novel constructive implicit fitting technique. Experiments demonstrate that the new algorithm is very stable and very efficient
Computer-assisted versus non-computer-assisted preoperative planning of corrective osteotomy for extra-articular distal radius malunions: a randomized controlled trial
<p>Abstract</p> <p>Background</p> <p>Malunion is the most common complication of distal radius fracture. It has previously been demonstrated that there is a correlation between the quality of anatomical correction and overall wrist function. However, surgical correction can be difficult because of the often complex anatomy associated with this condition. Computer assisted surgical planning, combined with patient-specific surgical guides, has the potential to improve pre-operative understanding of patient anatomy as well as intra-operative accuracy. For patients with malunion of the distal radius fracture, this technology could significantly improve clinical outcomes that largely depend on the quality of restoration of normal anatomy. Therefore, the objective of this study is to compare patient outcomes after corrective osteotomy for distal radius malunion with and without preoperative computer-assisted planning and peri-operative patient-specific surgical guides.</p> <p>Methods/Design</p> <p>This study is a multi-center randomized controlled trial of conventional planning versus computer-assisted planning for surgical correction of distal radius malunion. Adult patients with extra-articular malunion of the distal radius will be invited to enroll in our study. After providing informed consent, subjects will be randomized to two groups: one group will receive corrective surgery with conventional preoperative planning, while the other will receive corrective surgery with computer-assisted pre-operative planning and peri-operative patient specific surgical guides. In the computer-assisted planning group, a CT scan of the affected forearm as well as the normal, contralateral forearm will be obtained. The images will be used to construct a 3D anatomical model of the defect and patient-specific surgical guides will be manufactured. Outcome will be measured by DASH and PRWE scores, grip strength, radiographic measurements, and patient satisfaction at 3, 6, and 12 months postoperatively.</p> <p>Discussion</p> <p>Computer-assisted surgical planning, combined with patient-specific surgical guides, is a powerful new technology that has the potential to improve the accuracy and consistency of orthopaedic surgery. To date, the role of this technology in upper extremity surgery has not been adequately investigated, and it is unclear whether its use provides any significant clinical benefit over traditional preoperative imaging protocols. Our study will represent the first randomized controlled trial investigating the use of computer assisted surgery in corrective osteotomy for distal radius malunions.</p> <p>Trial registration</p> <p>NCT01193010</p
Application of Advanced Virtual Reality and 3D Computer Assisted Technologies in Computer Assisted Surgery and Tele-3D-Computer Assisted Surgery in Rhinology
- …