3,167 research outputs found
Study protocol and design for the assessment of paediatric pneumonia from X-ray images using deep learning
Introduction In low-income and middle-income countries, pneumonia remains the leading cause of illness and death in children<5 years. The recommended tool for diagnosing paediatric pneumonia is the interpretation of chest X-ray images, which is difficult to standardise and requires trained clinicians/radiologists. Current automated computational tools have primarily focused on assessing adult pneumonia and were trained on images evaluated by a single specialist. We aim to provide a computational tool using a deep-learning approach to diagnose paediatric pneumonia using X-ray images assessed by multiple specialists trained by the WHO expert X-ray image reading panel.Methods and analysis Approximately 10 000 paediatric chest X-ray images are currently being collected from an ongoing WHO-supported surveillance study in Bangladesh. Each image will be read by two trained clinicians/radiologists for the presence or absence of primary endpoint pneumonia (PEP) in each lung, as defined by the WHO. Images whose PEP labels are discordant in either lung will be reviewed by a third specialist and the final assignment will be made using a majority vote. Convolutional neural networks will be used for lung segmentation to align and scale the images to a reference, and for interpretation of the images for the presence of PEP. The model will be evaluated against an independently collected and labelled set of images from the WHO. The study outcome will be an automated method for the interpretation of chest radiographs for diagnosing paediatric pneumonia.Ethics and dissemination All study protocols were approved by the Ethical Review Committees of the Bangladesh Institute of Child Health, Bangladesh. The study sponsor deemed it unnecessary to attain ethical approval from the Academic and Clinical Central Office for Research and Development of University of Edinburgh, UK. The study uses existing X-ray images from an ongoing WHO-coordinated surveillance. All findings will be published in an open-access journal. All X-ray labels and statistical code will be made openly available. The model and images will be made available on request
CoVScreen: Pitfalls and recommendations for screening COVID-19 using Chest X-rays
The novel coronavirus (COVID-19), a highly infectious respiratory disease
caused by the SARS-CoV-2 has emerged as an unprecedented healthcare crisis. The
pandemic had a devastating impact on the health, well-being, and economy of the
global population. Early screening and diagnosis of symptomatic patients plays
crucial role in isolation of patient to help stop community transmission as
well as providing early treatment helping in reducing the mortality rate.
Although, the RT-PCR test is the gold standard for COVID-19 testing, it is a
manual, laborious, time consuming, uncomfortable, and invasive process. Due to
its accessibility, availability, lower-cost, ease of sanitisation, and portable
setup, chest X-Ray imaging can serve as an effective screening and diagnostic
tool. In this study, we first highlight limitations of existing datasets and
studies in terms of data quality, data imbalance, and evaluation strategy.
Second, we curated a large-scale COVID-19 chest X-ray dataset from many
publicly available COVID-19 imaging databases and proposed a pre-processing
pipeline to improve quality of the dataset. We proposed CoVScreen, an CNN
architecture to train and test the curated dataset. The experimental results
applying different classification scenarios on the curated dataset in terms of
various evaluation metrics demonstrate the effectiveness of proposed
methodology in the screening of COVID-19 infection.Comment: 21 page
Enhancing Security in Internet of Healthcare Application using Secure Convolutional Neural Network
The ubiquity of Internet of Things (IoT) devices has completely changed the healthcare industry by presenting previously unheard-of potential for remote patient monitoring and individualized care. In this regard, we suggest a unique method that makes use of Secure Convolutional Neural Networks (SCNNs) to improve security in Internet-of-Healthcare (IoH) applications. IoT-enabled healthcare has advanced as a result of the integration of IoT technologies, giving it impressive data processing powers and large data storage capacity. This synergy has led to the development of an intelligent healthcare system that is intended to remotely monitor a patient's medical well-being via a wearable device as a result of the ongoing advancement of the Industrial Internet of Things (IIoT). This paper focuses on safeguarding user privacy and easing data analysis. Sensitive data is carefully separated from user-generated data before being gathered. Convolutional neural network (CNN) technology is used to analyse health-related data thoroughly in the cloud while scrupulously protecting the privacy of the consumers.The paper provide a secure access control module that functions using user attributes within the IoT-Healthcare system to strengthen security. This module strengthens the system's overall security and privacy by ensuring that only authorised personnel may access and interact with the sensitive health data. The IoT-enabled healthcare system gets the capacity to offer seamless remote monitoring while ensuring the confidentiality and integrity of user information thanks to this integrated architecture
A statistical analysis of cervical auscultation signals from adults with unsafe airway protection
Background: Aspiration, where food or liquid is allowed to enter the larynx during a swallow, is recognized as the most clinically salient feature of oropharyngeal dysphagia. This event can lead to short-term harm via airway obstruction or more long-term effects such as pneumonia. In order to non-invasively identify this event using high resolution cervical auscultation there is a need to characterize cervical auscultation signals from subjects with dysphagia who aspirate. Methods: In this study, we collected swallowing sound and vibration data from 76 adults (50 men, 26 women, mean age 62) who underwent a routine videofluoroscopy swallowing examination. The analysis was limited to swallows of liquid with either thin (<5 cps) or viscous (≈300 cps) consistency and was divided into those with deep laryngeal penetration or aspiration (unsafe airway protection), and those with either shallow or no laryngeal penetration (safe airway protection), using a standardized scale. After calculating a selection of time, frequency, and time-frequency features for each swallow, the safe and unsafe categories were compared using Wilcoxon rank-sum statistical tests. Results: Our analysis found that few of our chosen features varied in magnitude between safe and unsafe swallows with thin swallows demonstrating no statistical variation. We also supported our past findings with regard to the effects of sex and the presence or absence of stroke on cervical ausculation signals, but noticed certain discrepancies with regards to bolus viscosity. Conclusions: Overall, our results support the necessity of using multiple statistical features concurrently to identify laryngeal penetration of swallowed boluses in future work with high resolution cervical auscultation
Prediction models for diagnosis and prognosis of covid-19: : systematic review and critical appraisal
Readers’ note This article is a living systematic review that will be updated to reflect emerging evidence. Updates may occur for up to two years from the date of original publication. This version is update 3 of the original article published on 7 April 2020 (BMJ 2020;369:m1328). Previous updates can be found as data supplements (https://www.bmj.com/content/369/bmj.m1328/related#datasupp). When citing this paper please consider adding the update number and date of access for clarity. Funding: LW, BVC, LH, and MDV acknowledge specific funding for this work from Internal Funds KU Leuven, KOOR, and the COVID-19 Fund. LW is a postdoctoral fellow of Research Foundation-Flanders (FWO) and receives support from ZonMw (grant 10430012010001). BVC received support from FWO (grant G0B4716N) and Internal Funds KU Leuven (grant C24/15/037). TPAD acknowledges financial support from the Netherlands Organisation for Health Research and Development (grant 91617050). VMTdJ was supported by the European Union Horizon 2020 Research and Innovation Programme under ReCoDID grant agreement 825746. KGMM and JAAD acknowledge financial support from Cochrane Collaboration (SMF 2018). KIES is funded by the National Institute for Health Research (NIHR) School for Primary Care Research. The views expressed are those of the author(s) and not necessarily those of the NHS, the NIHR, or the Department of Health and Social Care. GSC was supported by the NIHR Biomedical Research Centre, Oxford, and Cancer Research UK (programme grant C49297/A27294). JM was supported by the Cancer Research UK (programme grant C49297/A27294). PD was supported by the NIHR Biomedical Research Centre, Oxford. MOH is supported by the National Heart, Lung, and Blood Institute of the United States National Institutes of Health (grant R00 HL141678). ICCvDH and BCTvB received funding from Euregio Meuse-Rhine (grant Covid Data Platform (coDaP) interref EMR187). The funders played no role in study design, data collection, data analysis, data interpretation, or reporting.Peer reviewedPublisher PD
Common pitfalls and recommendations for using machine learning to detect and prognosticate for COVID-19 using chest radiographs and CT scans
Machine learning methods offer great promise for fast and accurate detection and prognostication of coronavirus disease 2019 (COVID-19) from standard-of-care chest radiographs (CXR) and chest computed tomography (CT) images. Many articles have been published in 2020 describing new machine learning-based models for both of these tasks, but it is unclear which are of potential clinical utility. In this systematic review, we consider all published papers and preprints, for the period from 1 January 2020 to 3 October 2020, which describe new machine learning models for the diagnosis or prognosis of COVID-19 from CXR or CT images. All manuscripts uploaded to bioRxiv, medRxiv and arXiv along with all entries in EMBASE and MEDLINE in this timeframe are considered. Our search identified 2,212 studies, of which 415 were included after initial screening and, after quality screening, 62 studies were included in this systematic review. Our review finds that none of the models identified are of potential clinical use due to methodological flaws and/or underlying biases. This is a major weakness, given the urgency with which validated COVID-19 models are needed. To address this, we give many recommendations which, if followed, will solve these issues and lead to higher-quality model development and well-documented manuscripts.</p
Effect of a 3-week intensive therapy intervention on physical performance of children with neurological conditions: a case study series
- …