424 research outputs found

    Blasts and shocks in the disc of NGC 4258

    Get PDF
    We present integral field spectroscopic observations of the central region of the active galaxy NGC 4258 obtained with the fibre IFU system INTEGRAL. We have been able to detect cold neutral gas by means of the interstellar NaD doublet absorption and to trace its distribution and kinematics with respect to the underlying disc. The neutral gas is blue-shifted with projected velocities in the 120--370 km/s range. We have also detected peculiar kinematics in part of the ionized gas in this region by means of a careful kinematic decomposition. The bipolar spatial distribution of the broader component is roughly coincident with the morphology of the X-ray diffuse emission. The kinematics of this gas can be explained in terms of expansion at very high (projected) velocities of up to 300 km/s. The observations also reveal the existence of a strip of neutral gas, parallel to the major kinematic axis, that is nearly coincident with a region of very high [SII]/Hα\alpha ratio tracing the shocked gas. Our observations are consistent with the jet model presented by \cite{wilsonetal01} in which a cocoon originating from the nuclear jet is shocking the gas in the galaxy disc. Alternatively, our observations are also consistent with the bipolar hypershell model of \cite{Sofue80} and \cite{SofueandVogler01}. On balance, we prefer the latter model as the most likely explanation for the puzzling features of this peculiar object.Comment: 7 pages, 10 colour figures. Accepted for publication in MNRAS

    Jet-related Excitation of the [CII] Emission in the Active Galaxy NGC 4258 with SOFIA

    Get PDF
    We detect widespread [CII]157.7um emission from the inner 5 kpc of the active galaxy NGC 4258 with the SOFIA integral field spectrometer FIFI-LS. The emission is found associated with warm H2, distributed along and beyond the end of southern jet, in a zone known to contain shock-excited optical filaments. It is also associated with soft X-ray hot-spots, which are the counterparts of the `anomalous radio arms' of NGC~4258, and a 1 kpc-long filament on the minor axis of the galaxy which contains young star clusters. Palomar-CWI H-alpha integral field spectroscopy shows that the filament exhibits non-circular motions within NGC 4258. Many of the [CII] profiles are very broad, with the highest line width, 455 km/s, observed at the position of the southern jet bow-shock. Abnormally high ratios of L([CII])/L(FIR) and L([CII])/L(PAH7.7um) are found along and beyond the southern jet and in the X-ray hotspots. These are the same regions that exhibit unusually large intrinsic [CII] line widths. This suggests that the [CII] traces warm molecular gas in shocks and turbulence associated with the jet. We estimate that as much as 40% (3.8 x 10^39 erg/s) of the total [CII] luminosity from the inner 5 kpc of NGC 4258 arises in shocks and turbulence (< 1% bolometric luminosity from the active nucleus), the rest being consistent with [CII] excitation associated with star formation. We propose that the highly-inclined jet is colliding with, and being deflected around, dense irregularities in a thick disk, leading to significant energy dissipation over a wide area of the galaxy.Comment: Accepted for Publication in the Astrophysical Journal Oct 29 201

    Why Does NGC 1068 Have a More Powerful Active Galactic Nucleus than NGC 4258 ?

    Get PDF
    The nuclear gas kinematics probed by water vapor maser emission has shown that two nearby active galaxies, NGC 1068 and NGC 4258, have a supermassive object in their nuclei and their masses are nearly comparable; a few 10^7 solar masses. Nevertheless, the activity of the central engine of NGC 1068 is more powerful by two orders of magnitude than that of NGC 4258. Since it is generally considered that the huge luminosities of active galactic nuclei are attributed to the mass accretion onto a supermassive black hole, the above observational results suggest that the accretion rate in NGC 1068 is much higher than that in NGC 4258. Comparing the kinematical properties of the accreting molecular clouds between NGC 1068 and NGC 4258, we find possible evidence for dynamical gas accretion in NGC 1068, which may be responsible for the more powerful central engine in this galaxy.Comment: 9 Latex (AASTeX) pages, 2 PostScript figures. To appear in Publications of the Astronomical Society of Japa

    A Stellar Dynamical Measurement of the Black Hole Mass in the Maser Galaxy NGC 4258

    Full text link
    We determine the mass of the black hole at the center of the spiral galaxy NGC 4258 by constructing axisymmetric dynamical models of the galaxy. These models are constrained by high spatial resolution imaging and long-slit spectroscopy of the nuclear region obtained with the {\em Hubble Space Telescope}, complemented by ground-based observations extending to larger radii. Our best mass estimate is \MBH = (3.3 \pm 0.2) \times 10^7 \MSun for a distance of 7.28 Mpc (statistical errors only). This is within 15% of (3.82\pm 0.01) \times 10^7 \MSun, the mass determined from the kinematics of water masers (rescaled to the same distance) assuming they are in Keplerian rotation in a warped disk. The construction of accurate dynamical models of NGC 4258 is somewhat compromised by an unresolved active nucleus and color gradients, the latter caused by variations in the stellar population and/or obscuring dust. These problems are not present in the ∌30\sim 30 other black hole mass determinations from stellar dynamics that have been published by us and other groups; thus, the relatively close agreement between the stellar dynamical mass and the maser mass in NGC 4258 enhances our confidence in the black hole masses determined in other galaxies from stellar dynamics using similar methods and data of comparable quality.Comment: 58 pages, submitted to ApJ. Some figures excluded due to size. The entire paper is at http://www.noao.edu/noao/staff/lauer/nuker_papers.htm

    Inner Molecular Rings in Barred Galaxies: BIMA SONG CO Observations

    Full text link
    Although inner star-forming rings are common in optical images of barred spiral galaxies, observational evidence for the accompanying molecular gas has been scarce. In this paper we present images of molecular inner rings, traced using the CO (1-0) emission line, from the Berkeley-Illinois-Maryland-Association Survey of Nearby Galaxies (BIMA SONG). We detect inner ring CO emission from all five SONG barred galaxies classified as inner ring (type (r)). We also examine the seven SONG barred galaxies classified as inner spiral (type (s)); in one of these, NGC 3627, we find morphological and kinematic evidence for a molecular inner ring. Inner ring galaxies have been classified as such based on optical images, which emphasize recent star formation. We consider the possibility that there may exist inner rings in which star formation efficiency is not enhanced. However, we find that in NGC 3627 the inner ring star formation efficiency is enhanced relative to most other regions in that galaxy. We note that the SONG (r) galaxies have a paucity of CO and H alpha emission interior to the inner ring (except near the nucleus), while NGC 3627 has relatively bright bar CO and H alpha emission; we suggest that galaxies with inner rings such as NGC 3627 may be misclassified if there are significant amounts of gas and star formation in the bar.Comment: To be published in the Astrophysical Journal, July 2002 A version of the paper with full resolution figures is available at: http://www.astro.umd.edu/~mregan/ms.ps.g

    Supermassive Black Holes in Galactic Nuclei: Past, Present and Future Research

    Full text link
    This review discusses the current status of supermassive black hole research, as seen from a purely observational standpoint. Since the early '90s, rapid technological advances, most notably the launch of the Hubble Space Telescope, the commissioning of the VLBA and improvements in near-infrared speckle imaging techniques, have not only given us incontrovertible proof of the existence of supermassive black holes, but have unveiled fundamental connections between the mass of the central singularity and the global properties of the host galaxy. It is thanks to these observations that we are now, for the first time, in a position to understand the origin, evolution and cosmic relevance of these fascinating objects.Comment: Invited Review, 114 pages. Because of space requirements, this version contains low resolution figures. The full resolution version can be downloaded from http://www.physics.rutgers.edu/~lff/publications.htm

    Supermassive Black Holes and the Evolution of Galaxies

    Get PDF
    Black holes, an extreme consequence of the mathematics of General Relativity, have long been suspected of being the prime movers of quasars, which emit more energy than any other objects in the Universe. Recent evidence indicates that supermassive black holes, which are probably quasar remnants, reside at the centers of most galaxies. As our knowledge of the demographics of these relics of a violent earlier Universe improve, we see tantalizing clues that they participated intimately in the formation of galaxies and have strongly influenced their present-day structure.Comment: 20 pages, - This is a near-duplicate of the paper in Nature 395, A14, 1998 (Oct 1

    The Narrow-Line Regions of LINERs as Resolved with the Hubble Space Telescope

    Get PDF
    LINERs exist in the nuclei of a large fraction of luminous galaxies, but their connection with the AGN phenomenon has remained elusive. We present Hubble Space Telescope narrowband [O III]5007 and H-alpha+[N II] emission-line images of the central regions of 14 galaxies with LINER nuclei. The compact, ~1 arcsec-scale, unresolved emission that dominates the line flux in ground-based observations is mostly resolved by HST. The bulk of this emission comes from regions with sizes of tens to hundreds of parsecs that are resolved into knots, filaments, and diffuse gas whose morphology differs from galaxy to galaxy. Most of the galaxies do not show clear linear structures or ionization cones analogous to those often seen in Seyfert galaxies. An exception is NGC 1052, the prototypical LINER, in which we find a 3 arcsec-long (~ 250 pc) biconical structure that is oriented on the sky along the galaxy's radio jet axis. Seven of the galaxies have been shown in previously published HST images to have a bright compact ultraviolet nuclear source, while the other seven do not have a central UV source. Our images find evidence of dust in the nuclear regions of all 14 galaxies, with clear indications of nuclear obscuration in most of the "UV-dark" cases. The data suggest that the line-emitting gas in most LINERs is photoionized by a central source (which may be stellar, nonstellar, or a combination thereof) but that this source is often hidden from direct view. We find no obvious morphological differences between LINERs with detected weak broad H-alpha wings in their spectra and those with only narrow lines. Likewise, there is no clear morphological distinction between objects whose UV spectra are dominated by hot stars (e.g., NGC 4569) and those that are AGN-like (e.g., NGC 4579).Comment: Accepted for publication in the ApJ. 25 pages, 3 tables, 9 JPEG Figure
    • 

    corecore