47,551 research outputs found

    Relaxation Effects in the Transition Temperature of Superconducting HgBa2CuO4+delta

    Full text link
    In previous studies on a number of under- and overdoped high temperature superconductors, including YBa_{2}Cu_{3}O_{7-y} and Tl_{2}Ba_{2}CuO_{6+\delta}, the transition temperature T_c has been found to change with time in a manner which depends on the sample's detailed temperature and pressure history. This relaxation behavior in T_c is believed to originate from rearrangements within the oxygen sublattice. In the present high-pressure studies on HgBa_{2}CuO_{4+\delta} to 0.8 GPa we find clear evidence for weak relaxation effects in strongly under- and overdoped samples (Tc4050KT_c\simeq 40 - 50 K) with an activation energy EA(1bar)0.80.9eVE_{A}(1 bar) \simeq 0.8 - 0.9 eV. For overdoped HgBa_{2}CuO_{4+\delta} E_{A} increases under pressure more rapidly than previously observed for YBa_{2}Cu_{3}O_{6.41}, yielding an activation volume of +11 \pm 5 cm^{3}; the dependence of T_c on pressure is markedly nonlinear, an anomalous result for high-T_c superconductors in the present pressure range, giving evidence for a change in the electronic and/or structural properties near 0.4 GPa

    Ion and mixed conducting oxides as catalysts

    Get PDF
    This paper gives a survey of the catalytic properties of solid oxides which display oxygen ion or mixed (i.e. ionic + electronic) conductivity. Particular consideration is given to the oxidation-reduction reactions of gas phase components, but attention is also devoted to oxygen exchange between gas and oxide. An attempt has been made to relate and explain the observed phenomena such as catalytic activity and selectivity in terms of the electrical conducting properties of the oxides, which depend on their crystal and defect structures.\ud \ud In a number of cases possible applications of these materials in (electro)catalytic reactors, sensors, fuel cells, oxygen pumps, etc. are indicated

    First-principles study of surface properties of PuO2: Effects of thickness and O-vacancy on surface stability and chemical activity

    Full text link
    The (111), (110), and (001) surfaces properties of PuO2 are studied by using density-functional theory+U method. The total-energy static calculations determine the relative order of stability for low-index PuO2 surfaces, namely, O-terminated (111) > (110) > defective (001) > polar (001). The effect of thickness is shown to modestly modulate the surface stability and chemical activity of the (110) surface. The high work function of 6.19 eV indicates the chemical inertia of the most stable (111) surface, and the surface O-vacancy with concentration C_V=25% can efficiently lower the work function to 4.35 eV, which is a crucial indicator of the difference in the surface chemical activities between PuO2 and \alpha-Pu2O3. For the polar (001) surface, 50% on-surface O-vacancy can effectively quench the dipole moment and stabilize the surface structure, where the residual surface oxygen atoms are arranged in a zigzag manner along the direction. We also investigate the relative stability of PuO2 surfaces in an oxygen environment. Under oxygen-rich conditions, the stoichiometric O-terminated (111) is found to be the most stable surface. Whereas under O-reducing conditions, the on-surface O-vacancy of C_V = 1/9 is stable, and for high reducing conditions, the (111) surface with nearly one monolayer subsurface oxygen removed (C_V = 8/9) becomes most stable.Comment: 9 JNM pages, 7 figure

    Calculations of the thermodynamic and kinetic properties of LiV3O8

    Full text link
    The phase behavior and kinetic pathways of Li1+xV3O8 are investigated by means of density functional theory (DFT) and a cluster expansion (CE) methodology that approximates the system Hamiltonian in order to identify the lowest energy configurations. Although DFT calculations predict the correct ground state for a given composition, both GGA and LDA fail to obtain phase stability consistent with experiment due to strongly localized vanadium 3d electrons. A DFT+U methodology recovers the correct phase stability for an optimized U value of 3.0eV. GGA+U calculations with this value of U predict electronic structures that qualitatively agree with experiment. The resulting calculations indicate solid solution behavior from LiV3O8 to Li2.5V3O8 and two-phase coexistence between Li2.5V3O8 and Li4V3O8. Analysis of the lithiation sequence from LiV3O8 to Li2.5V3O8 reveals the mechanism by which lithium intercalation proceeds in this material. Calculations of lithium migration energies for different lithium concentrations and configurations provides insight into the relevant diffusion pathways and their relationship to structural properties

    Insights into ultrafast demagnetization in pseudo-gap half metals

    Get PDF
    Interest in femtosecond demagnetization experiments was sparked by Bigot's discovery in 1995. These experiments unveil the elementary mechanisms coupling the electrons' temperature to their spin order. Even though first quantitative models describing ultrafast demagnetization have just been published within the past year, new calculations also suggest alternative mechanisms. Simultaneously, the application of fast demagnetization experiments has been demonstrated to provide key insight into technologically important systems such as high spin polarization metals, and consequently there is broad interest in further understanding the physics of these phenomena. To gain new and relevant insights, we perform ultrafast optical pump-probe experiments to characterize the demagnetization processes of highly spin-polarized magnetic thin films on a femtosecond time scale. Previous studies have suggested shifting the Fermi energy into the center of the gap by tuning the number of electrons and thereby to study its influence on spin-flip processes. Here we show that choosing isoelectronic Heusler compounds (Co2MnSi, Co2MnGe and Co2FeAl) allows us to vary the degree of spin polarization between 60% and 86%. We explain this behavior by considering the robustness of the gap against structural disorder. Moreover, we observe that Co-Fe-based pseudo gap materials, such as partially ordered Co-Fe-Ge alloys and also the well-known Co-Fe-B alloys, can reach similar values of the spin polarization. By using the unique features of these metals we vary the number of possible spin-flip channels, which allows us to pinpoint and control the half metals electronic structure and its influence onto the elementary mechanisms of ultrafast demagnetization.Comment: 17 pages, 4 figures, plus Supplementary Informatio
    corecore