7,156 research outputs found

    module-1.1-Basic Concepts

    Get PDF

    Modular Composition of Language Features through Extensions of Semantic Language Models

    Get PDF
    Today, programming or specification languages are often extended in order to customize them for a particular application domain or to refine the language definition. The extension of a semantic model is often at the centre of such an extension. We will present a framework for linking basic and extended models. The example which we are going to use is the RSL concurrency model. The RAISE specification language RSL is a formal wide-spectrum specification language which integrates different features, such as state-basedness, concurrency and modules. The concurrency features of RSL are based on a refinement of a classical denotational model for process algebras. A modification was necessary to integrate state-based features into the basic model in order to meet requirements in the design of RSL. We will investigate this integration, formalising the relationship between the basic model and the adapted version in a rigorous way. The result will be a modular composition of the basic process model and new language features, such as state-based features or input/output. We will show general mechanisms for integration of new features into a language by extending language models in a structured, modular way. In particular, we will concentrate on the preservation of properties of the basic model in these extensions

    Identifying and evaluating parallel design activities using the design structure matrix

    Get PDF
    This paper describes an approach based upon the Design Structure Matrix (DSM) for identifying, evaluating and optimising one aspect of CE: activity parallelism. Concurrent Engineering (CE) has placed emphasis on the management of the product development process and one of its major benefits is the reduction in lead-time and product cost [1]. One approach that CE promotes for the reduction of lead-time is the simultaneous enactment of activities otherwise known as Simultaneous Engineering. Whilst activity parallelism may contribute to the reduction in lead-time and product cost, the effect of iteration is also recognised as a contributing factor on lead-time, and hence was also combined within the investigation. The paper describes how parallel activities may be identified within the DSM, before detailing how a process may be evaluated with respect to parallelism and iteration using the DSM. An optimisation algorithm is then utilised to establish a near-optimal sequence for the activities with respect to parallelism and iteration. DSM-based processes from previously published research are used to describe the development of the approach

    Strategic Directions in Object-Oriented Programming

    Get PDF
    This paper has provided an overview of the field of object-oriented programming. After presenting a historical perspective and some major achievements in the field, four research directions were introduced: technologies integration, software components, distributed programming, and new paradigms. In general there is a need to continue research in traditional areas:\ud (1) as computer systems become more and more complex, there is a need to further develop the work on architecture and design; \ud (2) to support the development of complex systems, there is a need for better languages, environments, and tools; \ud (3) foundations in the form of the conceptual framework and other theories must be extended to enhance the means for modeling and formal analysis, as well as for understanding future computer systems

    Introduction to StarNEig -- A Task-based Library for Solving Nonsymmetric Eigenvalue Problems

    Full text link
    In this paper, we present the StarNEig library for solving dense non-symmetric (generalized) eigenvalue problems. The library is built on top of the StarPU runtime system and targets both shared and distributed memory machines. Some components of the library support GPUs. The library is currently in an early beta state and only real arithmetic is supported. Support for complex data types is planned for a future release. This paper is aimed for potential users of the library. We describe the design choices and capabilities of the library, and contrast them to existing software such as ScaLAPACK. StarNEig implements a ScaLAPACK compatibility layer that should make it easy for a new user to transition to StarNEig. We demonstrate the performance of the library with a small set of computational experiments.Comment: 10 pages, 4 figures (10 when counting sub-figures), 2 tex-files. Submitted to PPAM 2019, 13th international conference on parallel processing and applied mathematics, September 8-11, 2019. Proceedings will be published after the conference by Springer in the LNCS series. Second author's first name is "Carl Christian" and last name "Kjelgaard Mikkelsen
    • …
    corecore