492 research outputs found

    Stellarator equilibria and the problem of position control

    Get PDF

    Stellarator equilibria and the problem of position control

    Get PDF
    Interpolation frequency maps (% of the population) of broadly distributed H sub-clades (H2, H4, H5 and H6). Map templates were taken from Natural Earth free map repository ( http://www.naturalearthdata.com/ ). (PDF 2058 kb

    Perturbing an axisymmetric magnetic equilibrium to obtain a quasi-axisymmetric stellarator

    Full text link
    It is demonstrated that finite-pressure, approximately quasi-axisymmetric stellarator equilibria can be directly constructed (without numerical optimization) via perturbations of given axisymmetric equilibria. The size of such perturbations is measured in two ways, via the fractional external rotation and, alternatively, via the relative magnetic field strength, i.e. the average size of the perturbed magnetic field, divided by the unperturbed field strength. It is found that significant fractional external rotational transform can be generated by quasi-axisymmetric perturbations, with a similar value of the relative field strength, despite the fact that the former scales more weakly with the perturbation size. High mode number perturbations are identified as a candidate for generating such transform with local current distributions. Implications for the development of a general non-perturbative solver for optimal stellarator equilibria is discussed

    Semianalytical calculation of the zonal-flow oscillation frequency in stellarators

    Full text link
    Due to their capability to reduce turbulent transport in magnetized plasmas, understanding the dynamics of zonal flows is an important problem in the fusion programme. Since the pioneering work by Rosenbluth and Hinton in axisymmetric tokamaks, it is known that studying the linear and collisionless relaxation of zonal flow perturbations gives valuable information and physical insight. Recently, the problem has been investigated in stellarators and it has been found that in these devices the relaxation process exhibits a characteristic feature: a damped oscillation. The frequency of this oscillation might be a relevant parameter in the regulation of turbulent transport, and therefore its efficient and accurate calculation is important. Although an analytical expression can be derived for the frequency, its numerical evaluation is not simple and has not been exploited systematically so far. Here, a numerical method for its evaluation is considered, and the results are compared with those obtained by calculating the frequency from gyrokinetic simulations. This "semianalytical" approach for the determination of the zonal-flow frequency reveals accurate and faster than the one based on gyrokinetic simulations.Comment: 30 pages, 14 figure

    On neoclassical impurity transport in stellarator geometry

    Full text link
    The impurity dynamics in stellarators has become an issue of moderate concern due to the inherent tendency of the impurities to accumulate in the core when the neoclassical ambipolar radial electric field points radially inwards (ion root regime). This accumulation can lead to collapse of the plasma due to radiative losses, and thus limit high performance plasma discharges in non-axisymmetric devices.\\ A quantitative description of the neoclassical impurity transport is complicated by the breakdown of the assumption of small E×B\mathbf{E}\times \mathbf{B} drift and trapping due to the electrostatic potential variation on a flux surface Φ~\tilde{\Phi} compared to those due to the magnetic field gradient. The present work examines the impact of this potential variation on neoclassical impurity transport in the Large Helical Device (LHD) stellarator. It shows that the neoclassical impurity transport can be strongly affected by Φ~\tilde{\Phi}. The central numerical tool used is the δf\delta f particle in cell (PIC) Monte Carlo code EUTERPE. The Φ~\tilde{\Phi} used in the calculations is provided by the neoclassical code GSRAKE. The possibility of obtaining a more general Φ~\tilde{\Phi} self-consistently with EUTERPE is also addressed and a preliminary calculation is presented.Comment: 11 pages, 15 figures, presented at Joint Varenna-Lausanne International Workshop on Theory of Fusion Plasmas, 2012. Accepted for publication to Plasma Phys. and Control. Fusio

    Stellarator bootstrap current and plasma flow velocity at low collisionality

    Get PDF
    The bootstrap current and flow velocity of a low-collisionality stellarator plasma are calculated. As far as possible, the analysis is carried out in a uniform way across all low-collisionality regimes in general stellarator geometry, assuming only that the confinement is good enough that the plasma is approximately in local thermodynamic equilibrium. It is found that conventional expressions for the ion flow speed and bootstrap current in the low-collisionality limit are accurate only in the 1/ν1/\nu-collisionality regime and need to be modified in the ν\sqrt{\nu}-regime. The correction due to finite collisionality is also discussed and is found to scale as ν2/5\nu^{2/5}
    corecore