31,900 research outputs found

    How well can ultracompact bodies imitate black hole ringdowns?

    Full text link
    The ongoing observations of merging black holes by the instruments of the fledging gravitational wave astronomy has opened the way for testing the general relativistic Kerr black hole metric and, at the same time, for probing the existence of more speculative horizonless ultracompact objects. In this paper we quantify the difference that these two classes of objects may exhibit in the post-merger ringdown signal. By considering rotating systems in general relativity and assuming an eikonal limit and a third-order Hartle-Thorne slow rotation approximation, we provide the first calculation of the early ringdown frequency and damping time as a function of the body's multipolar structure. Using the example of a gravastar, we show that the main ringdown signal may differ as much as a few percent with respect to that of a Kerr black hole, a deviation that could be probed by near future Advanced LIGO/Virgo searches.Comment: 6 pages, 1 figure, some additional discussion in the text and some modifications in the figure to indicate the accuracy of the approach. Accepted for publication as a Rapid Communication in Physical Review

    Time Protection: the Missing OS Abstraction

    Get PDF
    Timing channels enable data leakage that threatens the security of computer systems, from cloud platforms to smartphones and browsers executing untrusted third-party code. Preventing unauthorised information flow is a core duty of the operating system, however, present OSes are unable to prevent timing channels. We argue that OSes must provide time protection in addition to the established memory protection. We examine the requirements of time protection, present a design and its implementation in the seL4 microkernel, and evaluate its efficacy as well as performance overhead on Arm and x86 processors

    Testing Fundamental Physics with High-Energy Cosmic Rays

    Get PDF
    Cosmic rays may provide opportunities for probing fundamental physics. For example, ultra-high-energy cosmic rays might originate from the decays of metastable heavy particles, and astrophysical gamma rays can be used to test models of quantum gravity. Both scenarios offer ways to avoid the GZK cut-off.Comment: 14 pages, 11 eps figures, uses cimento.cls (included), talk at Chacaltaya Meeting On Cosmic Ray Physics, 23-27 July 2000, La Paz, Bolivi

    Are extrasolar oceans common throughout the Galaxy?

    Full text link
    Light and cold extrasolar planets such as OGLE 2005-BLG-390Lb, a 5.5 Earth-mass planet detected via microlensing, could be frequent in the Galaxy according to some preliminary results from microlensing experiments. These planets can be frozen rocky- or ocean-planets, situated beyond the snow line and, therefore, beyond the habitable zone of their system. They can nonetheless host a layer of liquid water, heated by radiogenic energy, underneath an ice shell surface for billions of years, before freezing completely. These results suggest that oceans under ice, like those suspected to be present on icy moons in the Solar system, could be a common feature of cold low-mass extrasolar planets.Comment: Accepted in Astronomische Nachrichten (Astronomical Notes

    Scientific Realism and Primordial Cosmology

    Get PDF
    We discuss scientific realism from the perspective of modern cosmology, especially primordial cosmology: i.e. the cosmological investigation of the very early universe. We first (Section 2) state our allegiance to scientific realism, and discuss what insights about it cosmology might yield, as against "just" supplying scientific claims that philosophers can then evaluate. In particular, we discuss: the idea of laws of cosmology, and limitations on ascertaining the global structure of spacetime. Then we review some of what is now known about the early universe (Section 3): meaning, roughly, from a thousandth of a second after the Big Bang onwards(!). The rest of the paper takes up two issues about primordial cosmology, i.e. the very early universe, where "very early" means, roughly, much earlier (logarithmically) than one second after the Big Bang: say, less than 10−1110^{-11} seconds. Both issues illustrate that familiar philosophical threat to scientific realism, the under-determination of theory by data---on a cosmic scale. The first issue (Section 4) concerns the difficulty of observationally probing the very early universe. More specifically, the difficulty is to ascertain details of the putative inflationary epoch. The second issue (Section 5) concerns difficulties about confirming a cosmological theory that postulates a multiverse, i.e. a set of domains (universes) each of whose inhabitants (if any) cannot directly observe, or otherwise causally interact with, other domains. This again concerns inflation, since many inflationary models postulate a multiverse. For all these issues, it will be clear that much remains unsettled, as regards both physics and philosophy. But we will maintain that these remaining controversies do not threaten scientific realism.Comment: 52 pages. An abridged version will appear in "The Routledge Handbook of Scientific Realism", ed. Juha Saats
    • …
    corecore