5,213 research outputs found
Spectral Properties of Coupled Bose-Einstein Condensates
We investigate the energy spectrum structure of a system of two (identical)
interacting bosonic wells occupied by N bosons within the Schwinger realization
of the angular momentum. This picture enables us to recognize the symmetry
properties of the system Hamiltonian H and to use them for characterizing the
energy eigenstates. Also, it allows for the derivation of the single-boson
picture which is shown to be the background picture naturally involved by the
secular equation for H. After deriving the corresponding eigenvalue equation,
we recast it in a recursive N-dependent form which suggests a way to generate
the level doublets (characterizing the H spectrum) via suitable inner
parameters. Finally, we show how the presence of doublets in the spectrum
allows to recover, in the classical limit, the symmetry breaking effect that
characterizes the system classically.Comment: 8 pages, 3 figures; submitted to Phys. Rev. A. The present extended
form replaces the first version in the letter forma
Atom lasers: production, properties and prospects for precision inertial measurement
We review experimental progress on atom lasers out-coupled from Bose-Einstein
condensates, and consider the properties of such beams in the context of
precision inertial sensing. The atom laser is the matter-wave analog of the
optical laser. Both devices rely on Bose-enhanced scattering to produce a
macroscopically populated trapped mode that is output-coupled to produce an
intense beam. In both cases, the beams often display highly desirable
properties such as low divergence, high spectral flux and a simple spatial mode
that make them useful in practical applications, as well as the potential to
perform measurements at or below the quantum projection noise limit. Both
devices display similar second-order correlations that differ from thermal
sources. Because of these properties, atom lasers are a promising source for
application to precision inertial measurements.Comment: This is a review paper. It contains 40 pages, including references
and figure
Dynamics and statistical mechanics of ultra-cold Bose gases using c-field techniques
We review phase space techniques based on the Wigner representation that
provide an approximate description of dilute ultra-cold Bose gases. In this
approach the quantum field evolution can be represented using equations of
motion of a similar form to the Gross-Pitaevskii equation but with stochastic
modifications that include quantum effects in a controlled degree of
approximation. These techniques provide a practical quantitative description of
both equilibrium and dynamical properties of Bose gas systems. We develop
versions of the formalism appropriate at zero temperature, where quantum
fluctuations can be important, and at finite temperature where thermal
fluctuations dominate. The numerical techniques necessary for implementing the
formalism are discussed in detail, together with methods for extracting
observables of interest. Numerous applications to a wide range of phenomena are
presented.Comment: 110 pages, 32 figures. Updated to address referee comments. To appear
in Advances in Physic
- …