5,213 research outputs found

    Spectral Properties of Coupled Bose-Einstein Condensates

    Get PDF
    We investigate the energy spectrum structure of a system of two (identical) interacting bosonic wells occupied by N bosons within the Schwinger realization of the angular momentum. This picture enables us to recognize the symmetry properties of the system Hamiltonian H and to use them for characterizing the energy eigenstates. Also, it allows for the derivation of the single-boson picture which is shown to be the background picture naturally involved by the secular equation for H. After deriving the corresponding eigenvalue equation, we recast it in a recursive N-dependent form which suggests a way to generate the level doublets (characterizing the H spectrum) via suitable inner parameters. Finally, we show how the presence of doublets in the spectrum allows to recover, in the classical limit, the symmetry breaking effect that characterizes the system classically.Comment: 8 pages, 3 figures; submitted to Phys. Rev. A. The present extended form replaces the first version in the letter forma

    Atom lasers: production, properties and prospects for precision inertial measurement

    Full text link
    We review experimental progress on atom lasers out-coupled from Bose-Einstein condensates, and consider the properties of such beams in the context of precision inertial sensing. The atom laser is the matter-wave analog of the optical laser. Both devices rely on Bose-enhanced scattering to produce a macroscopically populated trapped mode that is output-coupled to produce an intense beam. In both cases, the beams often display highly desirable properties such as low divergence, high spectral flux and a simple spatial mode that make them useful in practical applications, as well as the potential to perform measurements at or below the quantum projection noise limit. Both devices display similar second-order correlations that differ from thermal sources. Because of these properties, atom lasers are a promising source for application to precision inertial measurements.Comment: This is a review paper. It contains 40 pages, including references and figure

    Dynamics and statistical mechanics of ultra-cold Bose gases using c-field techniques

    Full text link
    We review phase space techniques based on the Wigner representation that provide an approximate description of dilute ultra-cold Bose gases. In this approach the quantum field evolution can be represented using equations of motion of a similar form to the Gross-Pitaevskii equation but with stochastic modifications that include quantum effects in a controlled degree of approximation. These techniques provide a practical quantitative description of both equilibrium and dynamical properties of Bose gas systems. We develop versions of the formalism appropriate at zero temperature, where quantum fluctuations can be important, and at finite temperature where thermal fluctuations dominate. The numerical techniques necessary for implementing the formalism are discussed in detail, together with methods for extracting observables of interest. Numerous applications to a wide range of phenomena are presented.Comment: 110 pages, 32 figures. Updated to address referee comments. To appear in Advances in Physic
    • …
    corecore