1,983 research outputs found
Uplink millimeter-wave multi-cell multi-user massive multi-input multi-output systems
In this paper, we delve into the maximized spectral efficiency (SE) of millimeter-wave (mmWave) multicell multiuser massive MIMO Systems for uplink transmission with low-resolution phase shifters (LRPSs). Millimeter-wave massive multiple-input multiple-output (mMIMO) is an important technology for upcoming cellular networks which will provide higher bandwidth and throughput than current wireless systems and networks. LRPSs are commonly used to minimize power consumption, maximize spectral efficiency and diminish the complexity of hybrid precoder and combiner. In this paper, we consider a hybrid analog-digital precoder and combiner design with LRPSs for mmWave multi-cell multiuser mMIMO systems for uplink transmission to spectral efficiency in terms of iterations. The proposed technique outperforms when compared to traditional optimization approaches concerning spectral efficiency and bit error rate (BER). We show through simulation results that our designs with LRPSs outperform standard iteration procedures
Resource allocation for transmit hybrid beamforming in decoupled millimeter wave multiuser-MIMO downlink
This paper presents a study on joint radio resource allocation and hybrid precoding in multicarrier massive multiple-input multiple-output communications for 5G cellular networks. In this paper, we present the resource allocation algorithm to maximize the proportional fairness (PF) spectral efficiency under the per subchannel power and the beamforming rank constraints. Two heuristic algorithms are designed. The proportional fairness hybrid beamforming algorithm provides the transmit precoder with a proportional fair spectral efficiency among users for the desired number of radio-frequency (RF) chains. Then, we transform the number of RF chains or rank constrained optimization problem into convex semidefinite programming (SDP) problem, which can be solved by standard techniques. Inspired by the formulated convex SDP problem, a low-complexity, two-step, PF-relaxed optimization algorithm has been provided for the formulated convex optimization problem. Simulation results show that the proposed suboptimal solution to the relaxed optimization problem is near-optimal for the signal-to-noise ratio SNR <= 10 dB and has a performance gap not greater than 2.33 b/s/Hz within the SNR range 0-25 dB. It also outperforms the maximum throughput and PF-based hybrid beamforming schemes for sum spectral efficiency, individual spectral efficiency, and fairness index
Hybrid Precoder and Combiner Design with Low Resolution Phase Shifters in mmWave MIMO Systems
Millimeter wave (mmWave) communications have been considered as a key
technology for next generation cellular systems and Wi-Fi networks because of
its advances in providing orders-of-magnitude wider bandwidth than current
wireless networks. Economical and energy efficient analog/digial hybrid
precoding and combining transceivers have been often proposed for mmWave
massive multiple-input multiple-output (MIMO) systems to overcome the severe
propagation loss of mmWave channels. One major shortcoming of existing
solutions lies in the assumption of infinite or high-resolution phase shifters
(PSs) to realize the analog beamformers. However, low-resolution PSs are
typically adopted in practice to reduce the hardware cost and power
consumption. Motivated by this fact, in this paper, we investigate the
practical design of hybrid precoders and combiners with low-resolution PSs in
mmWave MIMO systems. In particular, we propose an iterative algorithm which
successively designs the low-resolution analog precoder and combiner pair for
each data stream, aiming at conditionally maximizing the spectral efficiency.
Then, the digital precoder and combiner are computed based on the obtained
effective baseband channel to further enhance the spectral efficiency. In an
effort to achieve an even more hardware-efficient large antenna array, we also
investigate the design of hybrid beamformers with one-bit resolution (binary)
PSs, and present a novel binary analog precoder and combiner optimization
algorithm with quadratic complexity in the number of antennas. The proposed
low-resolution hybrid beamforming design is further extended to multiuser MIMO
communication systems. Simulation results demonstrate the performance
advantages of the proposed algorithms compared to existing low-resolution
hybrid beamforming designs, particularly for the one-bit resolution PS
scenario
- …