134,242 research outputs found
Social-sparsity brain decoders: faster spatial sparsity
Spatially-sparse predictors are good models for brain decoding: they give
accurate predictions and their weight maps are interpretable as they focus on a
small number of regions. However, the state of the art, based on total
variation or graph-net, is computationally costly. Here we introduce sparsity
in the local neighborhood of each voxel with social-sparsity, a structured
shrinkage operator. We find that, on brain imaging classification problems,
social-sparsity performs almost as well as total-variation models and better
than graph-net, for a fraction of the computational cost. It also very clearly
outlines predictive regions. We give details of the model and the algorithm.Comment: in Pattern Recognition in NeuroImaging, Jun 2016, Trento, Italy. 201
Balanced Sparsity for Efficient DNN Inference on GPU
In trained deep neural networks, unstructured pruning can reduce redundant
weights to lower storage cost. However, it requires the customization of
hardwares to speed up practical inference. Another trend accelerates sparse
model inference on general-purpose hardwares by adopting coarse-grained
sparsity to prune or regularize consecutive weights for efficient computation.
But this method often sacrifices model accuracy. In this paper, we propose a
novel fine-grained sparsity approach, balanced sparsity, to achieve high model
accuracy with commercial hardwares efficiently. Our approach adapts to high
parallelism property of GPU, showing incredible potential for sparsity in the
widely deployment of deep learning services. Experiment results show that
balanced sparsity achieves up to 3.1x practical speedup for model inference on
GPU, while retains the same high model accuracy as fine-grained sparsity
Tracking Target Signal Strengths on a Grid using Sparsity
Multi-target tracking is mainly challenged by the nonlinearity present in the
measurement equation, and the difficulty in fast and accurate data association.
To overcome these challenges, the present paper introduces a grid-based model
in which the state captures target signal strengths on a known spatial grid
(TSSG). This model leads to \emph{linear} state and measurement equations,
which bypass data association and can afford state estimation via
sparsity-aware Kalman filtering (KF). Leveraging the grid-induced sparsity of
the novel model, two types of sparsity-cognizant TSSG-KF trackers are
developed: one effects sparsity through -norm regularization, and the
other invokes sparsity as an extra measurement. Iterative extended KF and
Gauss-Newton algorithms are developed for reduced-complexity tracking, along
with accurate error covariance updates for assessing performance of the
resultant sparsity-aware state estimators. Based on TSSG state estimates, more
informative target position and track estimates can be obtained in a follow-up
step, ensuring that track association and position estimation errors do not
propagate back into TSSG state estimates. The novel TSSG trackers do not
require knowing the number of targets or their signal strengths, and exhibit
considerably lower complexity than the benchmark hidden Markov model filter,
especially for a large number of targets. Numerical simulations demonstrate
that sparsity-cognizant trackers enjoy improved root mean-square error
performance at reduced complexity when compared to their sparsity-agnostic
counterparts.Comment: Submitted to IEEE Trans. on Signal Processin
- …