46,514 research outputs found
Heat pipe investigations
Techniques associated with thermal-vacuum and bench testing, along with flight testing of the OAO-C spacecraft heat pipes are outlined, to show that the processes used in heat transfer design and testing are adequate for good performance evaluations
Thermal testing by internal IR heating of the FEP module
A spacecraft module, to be integrated with the FLTSATCOM spacecraft, was tested in a simulated orbit environment separate from the host spacecraft. Thermal vacuum testing of the module was accomplished using internal IR heating rather than conventional external heat sources. For this configuration, the technique produced boundary conditions expected for flight to enable verification of system performance and thermal design details
Development of a silver-zinc battery system
Summary report is described of historical documentation and detailed design data for development of silver-zinc battery for use on Surveyor spacecraft. Electrical and physical characteristics of battery models are included, along with data on qualification, acceptance, solar-thermal-vacuum, mission simulation testing, and actual flight performance
A microgravity isolation mount
The design and preliminary testing of a system for isolating microgravity sensitive payloads from spacecraft vibrational and impulsive disturbances is discussed. The Microgravity Isolation Mount (MGIM) concept consists of a platform which floats almost freely within a limited volume inside the spacecraft, but which is constrained to follow the spacecraft in the long term by means of very weak springs. The springs are realized magnetically and form part of a six degree of freedom active magnetic suspension system. The latter operates without any physical contact between the spacecraft and the platform itself. Power and data transfer is also performed by contactless means. Specifications are given for the expected level of input disturbances and the tolerable level of platform acceleration. The structural configuration of the mount is discussed and the design of the principal elements, i.e., actuators, sensors, control loops and power/data transfer devices are described. Finally, the construction of a hardware model that is being used to verify the predicted performance of the MGIM is described
Development and flight history of SERT 2 spacecraft
A 25-year historical review of the Space Electric Rocket Test 2 (SERT 2) mission is presented. The Agena launch vehicle; the SERT 2 spacecraft; and mission-peculiar spacecraft hardware, including two ion thruster systems, are described. The 3 1/2-year development period, from 1966 to 1970, that was needed to design, fabricate, and qualify the ion thruster system and the supporting spacecraft components, is documented. Major testing of two ion thruster systems and related auxiliary experiments that were conducted in space after the 3 Feb. 1970, launch are reviewed. Extended ion thruster restarts from 1973 to 1981 are reported, in addition to cross-neutralization tests. Tests of a reflector erosion experiment were continued in 1989 to 1991. The continuing performance of spacecraft subsystems, including the solar arrays, over the 1970-1991 period is summarized. Finally, the knowledge of thruster-spacecraft interactions learned from SERT 2 is listed
A dynamic motion simulator for future European docking systems
Europe's first confrontation with docking in space will require extensive testing to verify design and performance and to qualify hardware. For this purpose, a Docking Dynamics Test Facility (DDTF) was developed. It allows reproduction on the ground of the same impact loads and relative motion dynamics which would occur in space during docking. It uses a 9 degree of freedom, servo-motion system, controlled by a real time computer, which simulates the docking spacecraft in a zero-g environment. The test technique involves and active loop based on six axis force and torque detection, a mathematical simulation of individual spacecraft dynamics, and a 9 degree of freedom servomotion of which 3 DOFs allow extension of the kinematic range to 5 m. The configuration was checked out by closed loop tests involving spacecraft control models and real sensor hardware. The test facility at present has an extensive configuration that allows evaluation of both proximity control and docking systems. It provides a versatile tool to verify system design, hardware items and performance capabilities in the ongoing HERMES and COLUMBUS programs. The test system is described and its capabilities are summarized
On-Orbit Validation of a Framework for Spacecraft-Initiated Communication Service Requests with NASA's SCaN Testbed
We design, analyze, and experimentally validate a framework for demand-based allocation of high-performance space communication service in which the user spacecraft itself initiates a request for service. Leveraging machine-to-machine communications, the automated process has potential to improve the responsiveness and efficiency of space network operations. We propose an augmented ground station architecture in which a hemispherical-pattern antenna allows for reception of service requests sent from any user spacecraft within view. A suite of ground-based automation software acts upon these direct-to-Earth requests and allocates access to high-performance service through a ground station or relay satellite in response to immediate user demand. A software-defined radio transceiver, optimized for reception of weak signals from the helical antenna, is presented. Design and testing of signal processing equipment and a software framework to handle service requests is discussed. Preliminary results from on-orbit demonstrations with a testbed onboard the International Space Station are presented to verify feasibility of the concept
SMS/GOES cell and battery data analysis report
The nickel-cadmium battery design developed for the Synchronous Meteorological Satellite (SMS) and Geostationary Operational Environmental Satellite (GOES) provided background and guidelines for future development, manufacture, and application of spacecraft batteries. SMS/GOES battery design, development, qualification testing, acceptance testing, and life testing/mission performance characteristics were evaluated for correlation with battery cell manufacturing process variables
The spacecraft control laboratory experiment optical attitude measurement system
A stereo camera tracking system was developed to provide a near real-time measure of the position and attitude of the Spacecraft COntrol Laboratory Experiment (SCOLE). The SCOLE is a mockup of the shuttle-like vehicle with an attached flexible mast and (simulated) antenna, and was designed to provide a laboratory environment for the verification and testing of control laws for large flexible spacecraft. Actuators and sensors located on the shuttle and antenna sense the states of the spacecraft and allow the position and attitude to be controlled. The stereo camera tracking system which was developed consists of two position sensitive detector cameras which sense the locations of small infrared LEDs attached to the surface of the shuttle. Information on shuttle position and attitude is provided in six degrees-of-freedom. The design of this optical system, calibration, and tracking algorithm are described. The performance of the system is evaluated for yaw only
Precision laser range finder system design for Advanced Technology Laboratory applications
Preliminary system design of a pulsed precision ruby laser rangefinder system is presented which has a potential range resolution of 0.4 cm when atmospheric effects are negligible. The system being proposed for flight testing on the advanced technology laboratory (ATL) consists of a modelocked ruby laser transmitter, course and vernier rangefinder receivers, optical beacon retroreflector tracking system, and a network of ATL tracking retroreflectors. Performance calculations indicate that spacecraft to ground ranging accuracies of 1 to 2 cm are possible
- …