1,191 research outputs found
Self-concatenated code design and its application in power-efficient cooperative communications
In this tutorial, we have focused on the design of binary self-concatenated coding schemes with the help of EXtrinsic Information Transfer (EXIT) charts and Union bound analysis. The design methodology of future iteratively decoded self-concatenated aided cooperative communication schemes is presented. In doing so, we will identify the most important milestones in the area of channel coding, concatenated coding schemes and cooperative communication systems till date and suggest future research directions
Three-Dimensional EXIT Chart Analysis of Iterative Detection Aided Coded Modulation Schemes
The iterative convergence of iteratively detected coded modulation schemes having different block lengths, decoding complexity and an unequal error protection capability is studied, when communicating over AWGNchannels using 8PSK modulation. More specifically, the coded modulation schemes investigated include Multilevel Coding (MLC), Trellis Coded Modulation (TCM), Turbo Trellis Coded Modulation (TTCM), Bit-Interleaved Coded Modulation (BICM) as well as Bit-Interleaved Coded Modulation employing Iterative Decoding (BICM-ID). A novel three dimensional EXIT chart was introduced for studying the iterative convergence behaviour of the Multistage Decoding (MSD) scheme used in MLC
Improving soft FEC performance for higher-order modulations via optimized bit channel mappings
Soft forward error correction with higher-order modulations is often
implemented in practice via the pragmatic bit-interleaved coded modulation
paradigm, where a single binary code is mapped to a nonbinary modulation. In
this paper, we study the optimization of the mapping of the coded bits to the
modulation bits for a polarization-multiplexed fiber-optical system without
optical inline dispersion compensation. Our focus is on protograph-based
low-density parity-check (LDPC) codes which allow for an efficient hardware
implementation, suitable for high-speed optical communications. The
optimization is applied to the AR4JA protograph family, and further extended to
protograph-based spatially coupled LDPC codes assuming a windowed decoder. Full
field simulations via the split-step Fourier method are used to verify the
analysis. The results show performance gains of up to 0.25 dB, which translate
into a possible extension of the transmission reach by roughly up to 8%,
without significantly increasing the system complexity.Comment: This paper was published in Optics Express and is made available as
an electronic reprint with the permission of OSA. The paper can be found at
the following URL on the OSA website:
http://www.opticsinfobase.org/oe/abstract.cfm?uri=oe-22-12-1454
Space-time coding techniques with bit-interleaved coded modulations for MIMO block-fading channels
The space-time bit-interleaved coded modulation (ST-BICM) is an efficient
technique to obtain high diversity and coding gain on a block-fading MIMO
channel. Its maximum-likelihood (ML) performance is computed under ideal
interleaving conditions, which enables a global optimization taking into
account channel coding. Thanks to a diversity upperbound derived from the
Singleton bound, an appropriate choice of the time dimension of the space-time
coding is possible, which maximizes diversity while minimizing complexity.
Based on the analysis, an optimized interleaver and a set of linear precoders,
called dispersive nucleo algebraic (DNA) precoders are proposed. The proposed
precoders have good performance with respect to the state of the art and exist
for any number of transmit antennas and any time dimension. With turbo codes,
they exhibit a frame error rate which does not increase with frame length.Comment: Submitted to IEEE Trans. on Information Theory, Submission: January
2006 - First review: June 200
EXIT charts for system design and analysis
Near-capacity performance may be achieved with the aid of iterative decoding, where extrinsic soft information is exchanged between the constituent decoders in order to improve the attainable system performance. Extrinsic information Transfer (EXIT) charts constitute a powerful semi-analytical tool used for analysing and designing iteratively decoded systems. In this tutorial, we commence by providing a rudimentary overview of the iterative decoding principle and the concept of soft information exchange. We then elaborate on the concept of EXIT charts using three iteratively decoded prototype systems as design examples. We conclude by illustrating further applications of EXIT charts, including near-capacity designs, the concept of irregular codes and the design of modulation schemes
Distributed Self-Concatenated Coding for Cooperative Communication
In this paper, we propose a power-efficient distributed binary self-concatenated coding scheme using iterative decoding (DSECCC-ID) for cooperative communications. The DSECCC-ID scheme is designed with the aid of binary extrinsic information transfer (EXIT) charts. The source node transmits self-concatenated convolutional coded (SECCC) symbols to both the relay and destination nodes during the first transmission period. The relay performs SECCC-ID decoding, where it mayor may not encounter decoding errors. It then reencodes the information bits using a recursive systematic convolutional (RSC) code during the second transmission period. The resultant symbols transmitted from the source and relay nodes can be viewed as the coded symbols of a three-component parallel concatenated encoder. At the destination node, three-component DSECCC-ID decoding is performed. The EXIT chart gives us an insight into operation of the distributed coding scheme, which enables us to significantly reduce the transmit power by about 3.3 dB in signal-to-noise ratio (SNR) terms, as compared with a noncooperative SECCC-ID scheme at a bit error rate (BER) of 10-5. Finally, the proposed system is capable of performing within about 1.5 dB from the two-hop relay-aided network’s capacity at a BER of 10-5 , even if there may be decoding errors at the relay
Probabilistic Shaping for Finite Blocklengths: Distribution Matching and Sphere Shaping
In this paper, we provide for the first time a systematic comparison of
distribution matching (DM) and sphere shaping (SpSh) algorithms for short
blocklength probabilistic amplitude shaping. For asymptotically large
blocklengths, constant composition distribution matching (CCDM) is known to
generate the target capacity-achieving distribution. As the blocklength
decreases, however, the resulting rate loss diminishes the efficiency of CCDM.
We claim that for such short blocklengths and over the additive white Gaussian
channel (AWGN), the objective of shaping should be reformulated as obtaining
the most energy-efficient signal space for a given rate (rather than matching
distributions). In light of this interpretation, multiset-partition DM (MPDM),
enumerative sphere shaping (ESS) and shell mapping (SM), are reviewed as
energy-efficient shaping techniques. Numerical results show that MPDM and SpSh
have smaller rate losses than CCDM. SpSh--whose sole objective is to maximize
the energy efficiency--is shown to have the minimum rate loss amongst all. We
provide simulation results of the end-to-end decoding performance showing that
up to 1 dB improvement in power efficiency over uniform signaling can be
obtained with MPDM and SpSh at blocklengths around 200. Finally, we present a
discussion on the complexity of these algorithms from the perspective of
latency, storage and computations.Comment: 18 pages, 10 figure
Performance analysis of IEEE 802.11n solutions combining MIMO architectures with iterative decoding and sub-optimal ML detection via MMSE and zero forcing GIS solutions
- …