7,250 research outputs found
Hierarchical interpolative factorization for elliptic operators: differential equations
This paper introduces the hierarchical interpolative factorization for
elliptic partial differential equations (HIF-DE) in two (2D) and three
dimensions (3D). This factorization takes the form of an approximate
generalized LU/LDL decomposition that facilitates the efficient inversion of
the discretized operator. HIF-DE is based on the multifrontal method but uses
skeletonization on the separator fronts to sparsify the dense frontal matrices
and thus reduce the cost. We conjecture that this strategy yields linear
complexity in 2D and quasilinear complexity in 3D. Estimated linear complexity
in 3D can be achieved by skeletonizing the compressed fronts themselves, which
amounts geometrically to a recursive dimensional reduction scheme. Numerical
experiments support our claims and further demonstrate the performance of our
algorithm as a fast direct solver and preconditioner. MATLAB codes are freely
available.Comment: 37 pages, 13 figures, 12 tables; to appear, Comm. Pure Appl. Math.
arXiv admin note: substantial text overlap with arXiv:1307.266
Fast and robust curve skeletonization for real-world elongated objects
We consider the problem of extracting curve skeletons of three-dimensional,
elongated objects given a noisy surface, which has applications in agricultural
contexts such as extracting the branching structure of plants. We describe an
efficient and robust method based on breadth-first search that can determine
curve skeletons in these contexts. Our approach is capable of automatically
detecting junction points as well as spurious segments and loops. All of that
is accomplished with only one user-adjustable parameter. The run time of our
method ranges from hundreds of milliseconds to less than four seconds on large,
challenging datasets, which makes it appropriate for situations where real-time
decision making is needed. Experiments on synthetic models as well as on data
from real world objects, some of which were collected in challenging field
conditions, show that our approach compares favorably to classical thinning
algorithms as well as to recent contributions to the field.Comment: 47 pages; IEEE WACV 2018, main paper and supplementary materia
Hierarchical interpolative factorization for elliptic operators: integral equations
This paper introduces the hierarchical interpolative factorization for
integral equations (HIF-IE) associated with elliptic problems in two and three
dimensions. This factorization takes the form of an approximate generalized LU
decomposition that permits the efficient application of the discretized
operator and its inverse. HIF-IE is based on the recursive skeletonization
algorithm but incorporates a novel combination of two key features: (1) a
matrix factorization framework for sparsifying structured dense matrices and
(2) a recursive dimensional reduction strategy to decrease the cost. Thus,
higher-dimensional problems are effectively mapped to one dimension, and we
conjecture that constructing, applying, and inverting the factorization all
have linear or quasilinear complexity. Numerical experiments support this claim
and further demonstrate the performance of our algorithm as a generalized fast
multipole method, direct solver, and preconditioner. HIF-IE is compatible with
geometric adaptivity and can handle both boundary and volume problems. MATLAB
codes are freely available.Comment: 39 pages, 14 figures, 13 tables; to appear, Comm. Pure Appl. Mat
Correcting curvature-density effects in the Hamilton-Jacobi skeleton
The Hainilton-Jacobi approach has proven to be a powerful and elegant method for extracting the skeleton of two-dimensional (2-D) shapes. The approach is based on the observation that the normalized flux associated with the inward evolution of the object boundary at nonskeletal points tends to zero as the size of the integration area tends to zero, while the flux is negative at the locations of skeletal points. Nonetheless, the error in calculating the flux on the image lattice is both limited by the pixel resolution and also proportional to the curvature of the boundary evolution front and, hence, unbounded near endpoints. This makes the exact location of endpoints difficult and renders the performance of the skeleton extraction algorithm dependent on a threshold parameter. This problem can be overcome by using interpolation techniques to calculate the flux with subpixel precision. However, here, we develop a method for 2-D skeleton extraction that circumvents the problem by eliminating the curvature contribution to the error. This is done by taking into account variations of density due to boundary curvature. This yields a skeletonization algorithm that gives both better localization and less susceptibility to boundary noise and parameter choice than the Hamilton-Jacobi method
- …