7,250 research outputs found

    Hierarchical interpolative factorization for elliptic operators: differential equations

    Full text link
    This paper introduces the hierarchical interpolative factorization for elliptic partial differential equations (HIF-DE) in two (2D) and three dimensions (3D). This factorization takes the form of an approximate generalized LU/LDL decomposition that facilitates the efficient inversion of the discretized operator. HIF-DE is based on the multifrontal method but uses skeletonization on the separator fronts to sparsify the dense frontal matrices and thus reduce the cost. We conjecture that this strategy yields linear complexity in 2D and quasilinear complexity in 3D. Estimated linear complexity in 3D can be achieved by skeletonizing the compressed fronts themselves, which amounts geometrically to a recursive dimensional reduction scheme. Numerical experiments support our claims and further demonstrate the performance of our algorithm as a fast direct solver and preconditioner. MATLAB codes are freely available.Comment: 37 pages, 13 figures, 12 tables; to appear, Comm. Pure Appl. Math. arXiv admin note: substantial text overlap with arXiv:1307.266

    Fast and robust curve skeletonization for real-world elongated objects

    Full text link
    We consider the problem of extracting curve skeletons of three-dimensional, elongated objects given a noisy surface, which has applications in agricultural contexts such as extracting the branching structure of plants. We describe an efficient and robust method based on breadth-first search that can determine curve skeletons in these contexts. Our approach is capable of automatically detecting junction points as well as spurious segments and loops. All of that is accomplished with only one user-adjustable parameter. The run time of our method ranges from hundreds of milliseconds to less than four seconds on large, challenging datasets, which makes it appropriate for situations where real-time decision making is needed. Experiments on synthetic models as well as on data from real world objects, some of which were collected in challenging field conditions, show that our approach compares favorably to classical thinning algorithms as well as to recent contributions to the field.Comment: 47 pages; IEEE WACV 2018, main paper and supplementary materia

    Hierarchical interpolative factorization for elliptic operators: integral equations

    Full text link
    This paper introduces the hierarchical interpolative factorization for integral equations (HIF-IE) associated with elliptic problems in two and three dimensions. This factorization takes the form of an approximate generalized LU decomposition that permits the efficient application of the discretized operator and its inverse. HIF-IE is based on the recursive skeletonization algorithm but incorporates a novel combination of two key features: (1) a matrix factorization framework for sparsifying structured dense matrices and (2) a recursive dimensional reduction strategy to decrease the cost. Thus, higher-dimensional problems are effectively mapped to one dimension, and we conjecture that constructing, applying, and inverting the factorization all have linear or quasilinear complexity. Numerical experiments support this claim and further demonstrate the performance of our algorithm as a generalized fast multipole method, direct solver, and preconditioner. HIF-IE is compatible with geometric adaptivity and can handle both boundary and volume problems. MATLAB codes are freely available.Comment: 39 pages, 14 figures, 13 tables; to appear, Comm. Pure Appl. Mat

    Correcting curvature-density effects in the Hamilton-Jacobi skeleton

    Get PDF
    The Hainilton-Jacobi approach has proven to be a powerful and elegant method for extracting the skeleton of two-dimensional (2-D) shapes. The approach is based on the observation that the normalized flux associated with the inward evolution of the object boundary at nonskeletal points tends to zero as the size of the integration area tends to zero, while the flux is negative at the locations of skeletal points. Nonetheless, the error in calculating the flux on the image lattice is both limited by the pixel resolution and also proportional to the curvature of the boundary evolution front and, hence, unbounded near endpoints. This makes the exact location of endpoints difficult and renders the performance of the skeleton extraction algorithm dependent on a threshold parameter. This problem can be overcome by using interpolation techniques to calculate the flux with subpixel precision. However, here, we develop a method for 2-D skeleton extraction that circumvents the problem by eliminating the curvature contribution to the error. This is done by taking into account variations of density due to boundary curvature. This yields a skeletonization algorithm that gives both better localization and less susceptibility to boundary noise and parameter choice than the Hamilton-Jacobi method
    • …
    corecore