45,235 research outputs found

    Resonance Energy Transfer

    Get PDF
    Resonance energy transfer, also known as Förster- or fluorescence- resonance energy transfer, or electronic energy transfer, is a photonic process whose relevance in many major areas of science is reflected both by a wide prevalence of the effect and through numerous technical applications. The process, operating through an optical near-field mechanism, effects a transport of electronic excitation between physically distinct atomic or molecular components, based on transition dipole-dipole coupling. In this chapter a comprehensive survey of the process is presented, beginning with an outline of the history and highlighting the early contributions of Perrin and Förster. A review of the photophysics behind resonance energy transfer follows, and then a discussion of some prominent applications of resonance energy transfer. Particular emphasis is given to analysis and sensing techniques used in molecular biology, ranging from the ‘spectroscopic ruler’ measurements of functional group separation, to fluorescence lifetime microscopy. The chapter ends with a description of the role of energy transfer in photosynthetic light harvesting

    Representability of algebraic topology for biomolecules in machine learning based scoring and virtual screening

    Full text link
    This work introduces a number of algebraic topology approaches, such as multicomponent persistent homology, multi-level persistent homology and electrostatic persistence for the representation, characterization, and description of small molecules and biomolecular complexes. Multicomponent persistent homology retains critical chemical and biological information during the topological simplification of biomolecular geometric complexity. Multi-level persistent homology enables a tailored topological description of inter- and/or intra-molecular interactions of interest. Electrostatic persistence incorporates partial charge information into topological invariants. These topological methods are paired with Wasserstein distance to characterize similarities between molecules and are further integrated with a variety of machine learning algorithms, including k-nearest neighbors, ensemble of trees, and deep convolutional neural networks, to manifest their descriptive and predictive powers for chemical and biological problems. Extensive numerical experiments involving more than 4,000 protein-ligand complexes from the PDBBind database and near 100,000 ligands and decoys in the DUD database are performed to test respectively the scoring power and the virtual screening power of the proposed topological approaches. It is demonstrated that the present approaches outperform the modern machine learning based methods in protein-ligand binding affinity predictions and ligand-decoy discrimination

    Mesoscopic Biochemical Basis of Isogenetic Inheritance and Canalization: Stochasticity, Nonlinearity, and Emergent Landscape

    Get PDF
    Biochemical reaction systems in mesoscopic volume, under sustained environmental chemical gradient(s), can have multiple stochastic attractors. Two distinct mechanisms are known for their origins: (aa) Stochastic single-molecule events, such as gene expression, with slow gene on-off dynamics; and (bb) nonlinear networks with feedbacks. These two mechanisms yield different volume dependence for the sojourn time of an attractor. As in the classic Arrhenius theory for temperature dependent transition rates, a landscape perspective provides a natural framework for the system's behavior. However, due to the nonequilibrium nature of the open chemical systems, the landscape, and the attractors it represents, are all themselves {\em emergent properties} of complex, mesoscopic dynamics. In terms of the landscape, we show a generalization of Kramers' approach is possible to provide a rate theory. The emergence of attractors is a form of self-organization in the mesoscopic system; stochastic attractors in biochemical systems such as gene regulation and cellular signaling are naturally inheritable via cell division. Delbr\"{u}ck-Gillespie's mesoscopic reaction system theory, therefore, provides a biochemical basis for spontaneous isogenetic switching and canalization.Comment: 24 pages, 6 figure

    Single-molecule experiments in biological physics: methods and applications

    Full text link
    I review single-molecule experiments (SME) in biological physics. Recent technological developments have provided the tools to design and build scientific instruments of high enough sensitivity and precision to manipulate and visualize individual molecules and measure microscopic forces. Using SME it is possible to: manipulate molecules one at a time and measure distributions describing molecular properties; characterize the kinetics of biomolecular reactions and; detect molecular intermediates. SME provide the additional information about thermodynamics and kinetics of biomolecular processes. This complements information obtained in traditional bulk assays. In SME it is also possible to measure small energies and detect large Brownian deviations in biomolecular reactions, thereby offering new methods and systems to scrutinize the basic foundations of statistical mechanics. This review is written at a very introductory level emphasizing the importance of SME to scientists interested in knowing the common playground of ideas and the interdisciplinary topics accessible by these techniques. The review discusses SME from an experimental perspective, first exposing the most common experimental methodologies and later presenting various molecular systems where such techniques have been applied. I briefly discuss experimental techniques such as atomic-force microscopy (AFM), laser optical tweezers (LOT), magnetic tweezers (MT), biomembrane force probe (BFP) and single-molecule fluorescence (SMF). I then present several applications of SME to the study of nucleic acids (DNA, RNA and DNA condensation), proteins (protein-protein interactions, protein folding and molecular motors). Finally, I discuss applications of SME to the study of the nonequilibrium thermodynamics of small systems and the experimental verification of fluctuation theorems. I conclude with a discussion of open questions and future perspectives.Comment: Latex, 60 pages, 12 figures, Topical Review for J. Phys. C (Cond. Matt
    • …
    corecore