586 research outputs found
Electric solar wind sail applications overview
We analyse the potential of the electric solar wind sail for solar system
space missions. Applications studied include fly-by missions to terrestrial
planets (Venus, Mars and Phobos, Mercury) and asteroids, missions based on
non-Keplerian orbits (orbits that can be maintained only by applying continuous
propulsive force), one-way boosting to outer solar system, off-Lagrange point
space weather forecasting and low-cost impactor probes for added science value
to other missions. We also discuss the generic idea of data clippers (returning
large volumes of high resolution scientific data from distant targets packed in
memory chips) and possible exploitation of asteroid resources. Possible orbits
were estimated by orbit calculations assuming circular and coplanar orbits for
planets. Some particular challenge areas requiring further research work and
related to some more ambitious mission scenarios are also identified and
discussed.Comment: 18 pages, 3 figures, accepted for publication in ESTCube-1 special
issue of Proceedings of the Estonian Academy of Science
Reexamination of data from the asteroid/meteoroid detector
A reexamination of the results of the Pioneer 10 and 11 Asteroid Meteoroid Detector, or Sisyphus, was carried out in the light of a recently derived theory characterizing interplanetary matter and the Zodiacal Light (ZL). Sisyphus measured individual meteoroids from reflected sunlight and ZL between meteoroid events. The results were questioned because meteoroid orbits could not be calculated as intended and the ZL as computed from individual meteoroids did not agree with values determined from the ZL mode and from the other ZL sensor on the spacecraft. It is first shown that, independent of any explanation, the measurements are, with high probability, valid and strongly correlated with the ZL. The model which explains the strange behavior of the Sisyphus instrument also resolves the enigma why the three dust experiments on the Pioneer 10 and 11 spacecraft produced extreme disparate results for the distribution and orbits of meteoric particles and the ZL. The theory based primarily on these measurements requires a population in the inner solar system of cold meteoroid material composed mainly of volatile molecules. These meteoroids in orbits of high eccentricity are called cosmoids. They are impulsively disrupted from solar heating, resulting in order of magnitude increases in optical cross section. The dispersed particles, predominantly micron sized, scatter most of the ZL and supply the polarization. The sublimation time in sunlight for micron sized particles of volatile composition opposes the gravitational flux increase expected in approaching the sun. The other two Pioneer 10/11 dust experiments were: the Imaging Photopolarimeter for the ZL, and the Meteoroid Detection Experiment that measured penetration of 25 micron (Pioneer 10) and 50 micron (Pioneer 11) thick walls of pressurized gas cells
End to End Satellite Servicing and Space Debris Management
There is growing demand for satellite swarms and constellations for global
positioning, remote sensing and relay communication in higher LEO orbits. This
will result in many obsolete, damaged and abandoned satellites that will remain
on-orbit beyond 25 years. These abandoned satellites and space debris maybe
economically valuable orbital real-estate and resources that can be reused,
repaired or upgraded for future use. Space traffic management is critical to
repair damaged satellites, divert satellites into warehouse orbits and
effectively de-orbit satellites and space debris that are beyond repair and
salvage. Current methods for on-orbit capture, servicing and repair require a
large service satellite. However, by accessing abandoned satellites and space
debris, there is an inherent heightened risk of damage to a servicing
spacecraft. Sending multiple small-robots with each robot specialized in a
specific task is a credible alternative, as the system is simple and
cost-effective and where loss of one or more robots does not end the mission.
In this work, we outline an end to end multirobot system to capture damaged and
abandoned spacecraft for salvaging, repair and for de-orbiting. We analyze the
feasibility of sending multiple, decentralized robots that can work
cooperatively to perform capture of the target satellite as a first step,
followed by crawling onto damage satellites to perform detailed mapping. After
obtaining a detailed map of the satellite, the robots will proceed to either
repair and replace or dismantle components for salvage operations. Finally, the
remaining components will be packaged with a de-orbit device for accelerated
de-orbit.Comment: 13 pages, 10 figures, Space Traffic Management Conference. arXiv
admin note: text overlap with arXiv:1809.02028, arXiv:1809.04459,
arXiv:1901.0971
Exploration of the solar system
A sourcebook of information on the solar system and the technology used for its exploration is presented. An outline of the potential achievements of solar system exploration is given along with a course of action which maximizes the rewards to mankind
NASA Thesaurus Supplement: A three part cumulative supplement to the 1982 edition of the NASA Thesaurus (supplement 3)
The three part cumulative NASA Thesaurus Supplement to the 1982 edition of the NASA Thesaurus includes Part 1, Hierarchical Listing, Part 2, Access Vocabulary, and Part 3, Deletions. The semiannual supplement gives complete hierarchies for new terms and includes new term indications for entries new to this supplement
Fourth Symposium on Chemical Evolution and the Origin and Evolution of Life
This symposium was held at the NASA Ames Research Center, Moffett Field, California, July 24-27, 1990. The NASA exobiology investigators reported their recent research findings. Scientific papers were presented in the following areas: cosmic evolution of biogenic compounds, prebiotic evolution (planetary and molecular), early evolution of life (biological and geochemical), evolution of advanced life, solar system exploration, and the Search for Extraterrestrial Intelligence (SETI)
Civil space technology initiative
The Civil Space Technology Initiative (CSTI) is a major, focused, space technology program of the Office of Aeronautics, Exploration and Technology (OAET) of NASA. The program was initiated to advance technology beyond basic research in order to expand and enhance system and vehicle capabilities for near-term missions. CSTI takes critical technologies to the point at which a user can confidently incorporate the new or expanded capabilities into relatively near-term, high-priority NASA missions. In particular, the CSTI program emphasizes technologies necessary for reliable and efficient access to and operation in Earth orbit as well as for support of scientific missions from Earth orbit
- …